期刊文献+

基于HOG特征的粒子滤波视频跟踪算法研究 被引量:1

Research on HOG-based particle filter vedio tracking
下载PDF
导出
摘要 在视频分析处理领域中,特别是在视频监控领域,目标跟踪正在受到越来越多的关注。由于在实际应用中,利用运动摄像机拍摄的视频中,会造成背景的运动和目标尺寸的变化,即使是在固定摄像机拍摄的视频中,也会由于背景环境的复杂,造成目标的丢失和干扰。针对这一问题,为了改善在复杂场景下的目标跟踪效果,提出了结合梯度方向直方图(HOG)和粒子滤波的目标跟踪算法。此方法是通过在传统粒子滤波算法的算法框架下,增加目标跟踪的特征,提高了跟踪的鲁棒性,并根据检测结果确定目标。实验仿真表明,与传统单一特征的粒子滤波算法相比,文中的算法更能准确有效地跟踪复杂背景下的动态目标。 In the field of video analysis and processing, especially in video surveillance, target tracking is attracting more and more attention. In practical applications, video shot by motion cameras will cause background motion and target size change. Even if it is shot by a fixed camera, the video will also have target loss and interference due to the complexity of the background environment. In order to improve the effect of target tracking in complex scenes, this paper proposes a target tracking algorithm which combines the Histograms of Oriented Gradients (HOG) with the particle filter. This method increases the tracking features and improves the tracking robustness through the traditional particle filter algorithm. The target will be fixed based on testing results. The simulation result shows that this algorithm tracks the dynamic target more accurate and effective compared with the traditional particle filter algorithm with single feature.
作者 赵平 孟朝晖
出处 《信息技术》 2012年第11期121-124,128,共5页 Information Technology
关键词 视频分析 目标跟踪 粒子滤波 梯度方向直方图 video analysis target tracking particle filter HOG
  • 相关文献

参考文献13

  • 1Nummiaro K, Koller-Meier E, Van Gool L. Anadaptive color-based particle filter[J]. Image and Vision Computing, 2003:99 - 110.
  • 2Li P H, Zhang T W, Pece A E C. Visual contour tracking based on particle filter[ J]. Image and Vision Computing, 2003:111 - 123.
  • 3Zhou S K, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance-adaotive models in particle filters[ J]. IEEE Transaction on Image Processing, 2004:1491 -1506.
  • 4lulier S I ,L'hlmann I K, Durmn-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 21300:477-482.
  • 5Satoh Y, Okatani T, Deguchi K. A color-based trackin by Kalman particle filter[ C]. Proceedings of the 17Intemational Conference on Pattern Recognition, Pattern Recognition, 2004 England: IEEE Computer Soicety ,2004.
  • 6Lowe G. Object Recognition from Local Scale-invariant Features [ C ]//International Conference on Computer Vision, 1999, Greece : IEEE Computer Soieety, 1999.
  • 7Dalai N, Tfiggs B. Histogram of oriented gradients for human detection[C] Computer Vision and Pattern Recognition (CVPR) ,2005. USA: IEEE Computer Soieety, 2005.
  • 8Navneet D, Bill T. Histograms of Oriented Gradients for Human Detection[ J]. Computer Vision and Pattern Recognition, 2005 ( 11 ) : 886 - 893.
  • 9姚剑敏,杨春建,刘经场,郭太良.多特征融合的非线性目标跟踪算法[J].光电工程,2008,35(3):5-9. 被引量:6
  • 10王欢,任明武,杨静宇.一种多特征融合的粒子滤波跟踪新算法[J].计算机工程与应用,2007,43(25):21-24. 被引量:7

二级参考文献29

  • 1李安平,敬忠良,胡士强.Particle filter based visual tracking with multi-cue adaptive fusion[J].Chinese Optics Letters,2005,3(6):326-329. 被引量:7
  • 2常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 3姚剑敏,许廷发,倪国强.一种基于优化小波特征的非线性目标跟踪算法[J].光学精密工程,2007,15(3):428-433. 被引量:5
  • 4Gavrila D. The visual analysis of human movement: A survey[J]. Computer Vision and Image Understanding, 1999, 73(1):82-98.
  • 5Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J]. International Joumal of Computer Vision, 1998, 29(1):5-28.
  • 6Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computer, 2003, 21:99-110.
  • 7Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005,1 : 886-893.
  • 8Xu X, Li B. Head tracking using particle filter with intensity gradient and color histogram[C]//Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), 2005: 888-891.
  • 9Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 10Deguchi K,Kawanaka O,Okatani T.Object tracking by the meanshift of regional color distribution combined with the particle-filter algorithm[C]//Proc of the 17th International Conference on Pattern Recognition,3:506-509.

共引文献15

同被引文献14

  • 1Turk M A,Pentland A P.Eigenface, elastic matchig, and neural nets.IEEE Proc, 1997,85(9): 1423-1435.
  • 2Yang G, Huang T S. Human face detection in complex background. Patten Recog nition 1994, 27(1): 53-63. 127-130.
  • 3J.Miao,B.Yin,K.Wang,L.Shen,and X.Chen.A hierarchical multiscale and multi angle sysyetm for human detection in a complex backgroung using gravity-cen ty template.Patern Recognition, 1999,32(7): 1237-1248.
  • 4M-H.Yang,H.Ahuja,Detecting Human Faces in Color Images,Proc.IEEE IntlConf. Image Processing, 1998 Vol: 127-130.
  • 5Felzenszwalb P. F, Girsllick R. B, McAllester D. Object Detection with Discriminatively Trained Part-Based Models. Pattern Analysis andMachine In telligence. 2010.
  • 6肖志勇.基于可变形部件模型融合上下文的物体检测[J].2014.
  • 7Felzellszwalb P. F, Girshick R. B, McAllester D. Cascade Object Detection with Deforrmable Part Models. Computer Vision and Pattern Recognition(CVR). 2010.
  • 8Felzenszwalb P, McAllcster D,Ramanan D,A discriminatively crained,multiscal e,deformable part model[A].Computer Vision and Pattern Recognition[C].2008. 1-8.
  • 9N. Dalalalld, B. Triggs. Histograms oforiemed gradients for human detectio n. CVPR. 2005, pages I: 886-893.
  • 10Pedro FelzeI1Szwalb, David Mc Allester, Deva Ramanan. A Discriminatively Trained Multiscale Deformable Part Model.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部