期刊文献+

基于英特尔架构的LTE系统的一种CRC校检算法

A CRC Checking Algorithm of LTE System Based on Intel Architecture
下载PDF
导出
摘要 循环冗余校验码CRC(Cyclic Redundancy Check)是数据通信领域中最常用的一种差错校验码,文中引用了一种基于IA(Intel Architecture)PCLMULQDQ指令的快速CRC算法,用于在LTE系统中快速实现CRC24校检算法。不同于使用传统的约简算法简化信息,该算法通过一种快速的折叠途径将一个任意长度的缓冲器缩减至较小的长度,然后使用传统的约简算法(比如巴雷特约简算法)做进一步简约计算。文中通过C++代码实现这种快速CRC算法模拟并与传统算法做比较,从而验证该算法的有效性。 Cyclic redundancy check is the most commonly used error check code in the field of data communication. Quoted one kind of fast CRC algorithm based on the IA ( Intel Architecture) PCLMULQDQ instruction which is used in LTE system for the CRC24 algo- rithm implementation, the C++ code was designed for the implementation. Unlike traditional reduction algorithm to reduce the entire mes sage, the algorithm uses a fast folding approach which will reduce an arbitrary length of the buffer to a smaller length, then use the tradi tional algorithms ( such as Barrett reduction algorithm) to do further reduction calculation. Achieve the fast CRC algorithm simulation and compare with traditional algorithm through the C++ code,which verifies the validity of the algorithm.
出处 《计算机技术与发展》 2012年第12期93-96,共4页 Computer Technology and Development
基金 江苏高校优势学科建设工程资助项目(yx002001)
关键词 CRC24算法 PCLMULQDQ指令 折叠算法 LTE系统 CRC24 algorithm PCLMULQDQ folding algorithm LTE system
  • 相关文献

参考文献8

  • 1吴伟陵牛凯移动通信原理[M].北京:电子工业出版社,2006.
  • 2谢希仁.计算机网络[M].第5版.北京:电子工业出版社,2009:217-219.
  • 3张新程.LTE空中接口技术与特性[M].北京:人民邮电出版社,2009:177-180.
  • 4Cheng A Y, Yeung D S. Sensitivity analysis of neocognitron [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part C : Applications and Reviews, 1999,29 (2) :238-249.
  • 5Spencer Q H, Swindlehurst A L, Haardt M. Zero- forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels[ J]. IEEE Transactions on Signal Processing,2004, 52(2) :461-471.
  • 6Yeung D S, Sun X. Using function approximation to analyze the sensitivity of the MLP with antisymmetric squashing activation function[ J]. IEEE Trans on Neural Network, 2002 (1):34- 43.
  • 7Freund Y. Boosting a Weak Learning Algorithm by Majority [ J ]. Information and Computation, 1995,121 (2) :256-285.
  • 8Choi J Y,Choi Chong-Ho. Sensitivity Analysis of Multilayer Perception with Differentiable Activation Functions [ J]. IEEE Transactions on Neural Networks, 1992,3 ( 1 ) : 101 - 107.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部