期刊文献+

基于快速SIFT匹配的行人信息检测 被引量:4

Pedestrian Detection Based on Rapid SIFT Matching
下载PDF
导出
摘要 在智能监控中,检测行人是判断异常的必要步骤,复杂场景下行人检测一直是研究的热点难点,依据人体头部作为人体这种非刚体中的稳定部分,提出了一种快速而稳健的行人检测算法。该算法首先对摄像头拍摄的视频选取感兴趣区域,利用离线训练的Adaboost级联分类器检测人的头部区域,然后通过快速SIFT算法匹配相邻帧的人的头部,进而进行判断人的运动速度以及方向,便于进行下一步研究。通过实验验证以及与目前具有相关代表性的方法对比,论证了所提出算法在复杂场景下也具有很好的检测匹配效果,具有良好的有效性和可靠性。 Detecting pedestrians,as a necessary step in the abnormal behavior judgment in intelligent monitoring,is indispensable.Pedestrian detection is a difficult problem especially under complicated scene.A fast and robust algorithm using for pedestrian detection,based on people ' s head,is proposed in this paper.The algorithm firstly proceeds the video pre-processing,and isolates a region of interest(ROI)quickly.In the ROI,human head is detected by using a cascade of classifiers.Then,people ' s movement speed and direction could be obtained from a fast SIFT(Scale-invariant feature transform)algorithm which is adopted to match the people ' s head between the adjacent frames.Experimental results show the proposed algorithm ' s higher effectiveness and reliability by comparing with the related methods.
出处 《电子器件》 CAS 北大核心 2012年第5期601-606,共6页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(11176016 60872117)
关键词 感兴趣区域 行人检测 人体头部 快速SIFT匹配 ROI pedestrian detection head rapid SIFT matching
  • 相关文献

参考文献18

  • 1Chee B C. Detection and Monitoring of Passengers on a Bus by Video Surveillance [ C ]//Proceedings of 14th International Conference on Image Analysis and Processing,2007:143-148.
  • 2Han H, Ding Y, Hao K. A New Immune Particle Filter Algorithm for Tracking a Moving Target [ C ]//Proeedings of 6th Interna- tional Conference on Natural Computation,2010:3248-3252.
  • 3Zhong Z, Xu Y. Crowd Energy and Feature Analysis [ C ]// Proceedings of IEEE International Conference on Integration Technology, 2007 : 144 - 150.
  • 4Elhabian S, Ali A, Farag A. Face Recognition at-a-Distance using Texture Sparse-Stereo and Dense-Stereo [ C ]//International Conference on Multimedia Technology ,2011:6690-6695.
  • 5Czyzewski A. Examining Kalman Filters Applied to Tracking Objects in Motion [ C ]//Proceedings of the 9th International Workshop on Image Analysis for Multimedia Interactive Services ,2008:175-178.
  • 6Talele K T, Kadam S. Face Detection and Geometric Face Normali- zation [ C ]//Proceedings of IEEE Region 10 Conference ,2009 : 1-6.
  • 7Li M, Zhang Z, Huang K, et al. Estimating the Number of People in Crowded Scenes by MID Based Foreground Segmentation and Head-Shoulder Detection [ C ]//Proceedings of International Conference on Pattern Recognition ,2008,1 : 1-4.
  • 8Fan H,Zhu L L,Tang Y D. An Extended Set of Haar-Like Features for Rapid Object Detection [ C ]//Proceedings of IEEE International Conference on Image Processing,2002,1:900-903.
  • 9Guo L,Ge P S,Zhang M H,et al. Pedestrian Detection for Intelligent Transportation Systems Combining AdaBoost Algorithm and Support Vector Machine [ J ]. Expert Systems with Applications, 2012,39 (4) :4274-4286.
  • 10Nguyen N T, Phung D Q. Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Models[ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:955-960.

同被引文献49

  • 1Shu Chang,Ding Xiaoqin, Fang Chi. Histogram of the Oriented Gradient for Face Recognition [ J ]. Tsinghua Science and Technology. 2011 ( 2 ) :216 - 224.
  • 2Zeng Chengbin, Ma Huadong. Robust Head-Shoulder Detection by PCA-Based Multilevel HOG-LBP Detector for People Counting[ C ]//Proceedings of the 2010 20th International Conference on Pattern Recognition,2069 -2072.
  • 3Cheng Li. An Analysis of Hog Production Prediction in Liaoning Province [ C]//Proceedings of the 2011 International Conference on Information Management, Innovation Management and Industrial Engineering, 236 -239.
  • 4Panachit Kittipanya-nqam , Eng How Lung, Springer-Verlag. HOG-based descriptors on rotation invariant human detection [ C ]//Proceedings of the 2010 international conference, 143 - 152.
  • 5Dalal N,Triggs B. Histograms of oriented gradients for humandetection[ C ]//Proceedings of IEEE Computer Society Confer - ence on Computer Vision and Pattern Recognition,2005:886 -893.
  • 6Piotr Dollal r, Christian Wojek. Pedestrian Detection : An Evalua-tion of the State of the Art[ J] . IEEE Transactions on Pattern Anal-ysis and Machine Intelligence. 2012,32(4) :743-761.
  • 7Zheng Gang, Chen Youbin. A Review on Vision-Based PedestrianDetection[ J]. IEEE Global High Tech Congress on Electronics.2010,3(12):49-54.
  • 8Li Bo, Yao Qingming. A Review on Vision-based Pedestrian De-tection in Intelligent Transportation Systems [ C ]. Networking,Sensing and Control (ICNSC), IEEE. 2010:393-398.
  • 9D G Lowe. Object Recognition from Local Scale-Invariant Features[C]. The Proceedings of the 7th IEEE International Conference onComputer vision, 1999 : 1150-1157.
  • 10Liu Yazhou, Shan Shiguang. 3D Haar-Like Features for Pedestri-an Detection [ C ]. IEEE International Conference on Multimediaand Expo, 2007:1263-1266.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部