摘要
1959年,Goodman发现了任一p阶图中k_3与k_3的个数之和,即f_3,仅是顶点的度d_i的函数之和(1≤i≤p).人们总企图求得k_4的个数与k_4个数之和的公式f_4.首先,证明f_4并不仅是d_i的函数之和(1≤i≤p);然后,求了f_4的公式,但它们还依赖一个自同构图c_(11).
In 1959, Goodman found that the sum of the numbers of k3 and k^-3, f3, in a configuration of order p, is only the sum of functions on vertex degree di, 1≤i≤p. People have tried to derive the sum function of k4 and k^-4. It is firt proven that f4 is not only the sum of the function on di, 1≤i≤p. Then, the formula of f4, which is dependent on an automorphism configuration c11, is established.
出处
《应用数学与计算数学学报》
2012年第4期355-359,共5页
Communication on Applied Mathematics and Computation
基金
上海市教育委员会重点学科建设资助项目(J50101)
关键词
边染色
三点形
自同构
edge coloring
three point shapes
automorphism