期刊文献+

特殊凸体的p-几何最小表面积

p-geominimal surface area of special convex bodies
下载PDF
导出
摘要 结合p-投影体和p-几何最小表面积的定义,首先,得到了一类凸体p-几何最小表面积的单调性.然后,给出了另外一类凸体p-几何最小表面积的积分表达式,并由此定义了这类凸体的p-混合几何最小表面积,从而得到了一些不等式. Combined with the definitions of p-projection bodies and p-geominimal surface area, the monotonicity of p-geominimal surface areas for some convex bodies is obtained. Then, the integral representation of p-geominimal surface area for another convex bodies is given. Moreover, the p-mixed geominimal surface area for this class is introduced, and several inequalities are gotten.
作者 杜昌敏
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2012年第4期396-402,共7页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(10971128)
关键词 p-几何最小表面积 p-混合体积 p-投影体 p-geominimal surface area p-mixed volume p-projection body
  • 相关文献

参考文献13

  • 1Firey W J. P-means of convex bodies [J]. Math. Scand., 1962, 10: 17-24.
  • 2Petty C M. Geominimal surface area [J]. Geom. Dedicata, 1974, 3(1): 77-97.
  • 3Lutwak E. The Brunn-Minkowski-Firey theory II: aftine and geominimM surface area [J]. Adv. Math., 1996, 118: 244-294.
  • 4Lutwak E. The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski proplem [J]. J. Differential Geometry, 1993, 38: 131-150.
  • 5Aleksandrov A D. On the theory of mixed volumes I: extension of certain concepts in the theory of convex bodies [J]. Mat. Sb., 1937, 2: 947-972.
  • 6Bourgain J, Milman V. New volume ratio properties for convex symmetric bodies in R [J]. Invent. Math., 1987, 88: 319-340.
  • 7Gardner R J. The Brunn-Minkowski inequality [J]. Bull. Amer. Math. Soe., 2002, 39(3): 355-405.
  • 8Gardner R J. Geometric Tomogruphy [M]. 2nd ed. New York: Cambridge University Press, 2006.
  • 9Lutwak E, Yang D, Zhang G. Lp affine isoperimetric inequalities [J]. J. Differential Geometry, 2000, 56: 111-132.
  • 10Petty C M. Affine isoperimetric problems [J]. Ann. New York Acad. Sci., 1985, 440: 113-127.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部