期刊文献+

Tb^(3+)掺杂CePO_4花状团簇的控制合成及发光性能 被引量:2

Hydrothermal Synthesis and Luminescence Properties of CePO_4∶Tb Flower-Like Clusters
下载PDF
导出
摘要 在无模板条件下,通过调节Tb3+的浓度水热法控制合成了CePO4∶Tb花状团簇。花状团簇由直径为80~90nm、长度约为1μm的纳米线组成。利用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)和荧光光谱分析了产物的相结构、晶粒尺寸、形貌及发光性能。当Ce3+/Tb3+摩尔比为0.850∶0.150时,Tb3+在过量的磷酸体系中诱导纳米线组装生长成花状团簇。发现反应物Ce3+/Tb3+摩尔比和磷酸浓度影响产物形貌的控制合成。并推测了花状团簇的生长机制。产物CePO4∶Tb的荧光性质测试表明,当Ce3+/Tb3+摩尔比为0.850∶0.150时,所合成的花状团簇的发射强度达到最大值,Tb3+的掺入量继续增加其发光强度迅速降低。 Tb3+-doped CePO4 flower-like clusters were hydrothermally synthesized without using any template or surfactant by varying the reactant Tb3+ cation concentration.It was observed that the flower-like clusters were composed by nanowires with a diameter of about 80~90 nm and lengths up to 1 μm.The structures,morphologies,sizes and luminescence properties of the products were studied by X-ray powder diffraction(XRD),field-emission scanning electronic microscopy(FE-SEM),and luminescence spectra.With the reactant Ce3+/Tb3+ molar ratio of 0.850∶0.150,the uniform flower-like clusters were actually composed of a self-assembly of the oriented nanowires through an Tb3+-induced in the excessive PO3-4.It was found that the reactant Ce3+/Tb3+ molar ratio and phosphoric acid played key roles in the morphology control of the product.A possible formation mechanism for the flower-like morphology was also proposed.The luminescence properties of CePO4∶Tb flower-like cluster were performed,indicating that the strongest emission intensity was reached with 0.850∶0.150 molar ratios of Ce3+/Tb3+.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第1期27-30,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(20861005) 内蒙古自然科学基金项目(2011BS0801) 内蒙古大学高层次人才引进科研启动基金项目资助
关键词 CePO4∶Tb 花状团簇 水热合成 发光 CePO4∶Tb Flower-like clusters Hydrothermal synthesis Luminescence
  • 相关文献

参考文献19

  • 1Mondejar S P, Kovtun A, Epple M. J. Mater. Chem., 2007, 17(39): 4153.
  • 2Sohn K S, Choi Y Y. J. Electrochera. Soc., 2000, 147(6): 2375.
  • 3Riwotzki K, Meyssamy H, Schnablegger H, et al. Angew. Chem. Int. Ed., 2001, 40(3): 573.
  • 4Kang Y, Kim E J, Lee D Y, et al. J. Alloys Compd. , 2002, 347(1--2): 266.
  • 5Lenggoro I W, Xia B, Mizushima H, et al. Mater. Lett. , 2001, 50(2--3): 92.
  • 6Rambabu U, Munirathnam N. R, Prakash T L, et al. Mater. Chem. Phys., 2002, 78(1): 160.
  • 7LiQ, Yam VWW. Angew. Chem. Int. Ed., 2007, 46(19): 3486.
  • 8Rajesh K, Mukundan P, Krishna Pillai P, et al. Chem. Mater. , 2004, 16(14) : 2700.
  • 9Xing Y, Li M, Davis S, et al. J. Phys. Chem. B, 2006, 110(3): 1111.
  • 10Mai H X, Zhang Y W, Sun L D, et al. Chem. Mater. , 2007, 19(18) : 4514.

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部