期刊文献+

Population Bursts of Parvalbumin-Positive Interneurons Inhibit Spiking Pyramidal Cells in Spontaneously Active Cortical in Vitro Networks

Population Bursts of Parvalbumin-Positive Interneurons Inhibit Spiking Pyramidal Cells in Spontaneously Active Cortical in Vitro Networks
下载PDF
导出
摘要 Author present the interplay between different neuron types in the spontaneous electrical activity of low density cortical in vitro networks grown on MEA (multielectrode arrays) of glass neurochips. In 10% of the networks, the continuously spiking activity of some neurons was inhibited by synchronous bursts or superbursts of the majority of the other neurons. Immunohistochemical staining subsequent to MEA recordings suggest that the synchronously bursting neurons are parvalbumin-positive interneurons with abundant axonal ramifications. Blocking chemical synaptic transmission by Ca2+-free medium revealed that the curbed spiking neurons are intrinsically active. It is assumed that these neurons are pyramidal cells which may be inhibited by groups of synchronously bursting interneurons. It is propose that the observed burst-induced inhibition is an important principle in the temporal organization of neuronal activity as well as in the restriction of excitation, and thus essential for information processing in the cerebral cortex.
出处 《Journal of Chemistry and Chemical Engineering》 2012年第11期1033-1042,共10页 化学与化工(英文版)
关键词 NEUROCHIP MEA cerebral cortex cortical networks spontaneous activity inhibitory interaction PARVALBUMIN interneurons. 阳性神经元 大脑皮质 锥体细胞 小白蛋白 网络 自发活动 体外 人口
  • 相关文献

参考文献41

  • 1Du, J.; Riedel-Kruse, I. H.; Nawroth, J. C.; Roukes, M. L.; Laurent, G.; Masmanidis, S. C. High-Resolution Three-Dimensional Extracellular Recording of Neuronal Activity with Microfabricated Electrode Arrays. J. Neurophysiol. 2009, 101, 1671-1678.
  • 2Hebb, D. O. The Organization of Behavior. Neuropsychological Theory; Wiley: NY, 1949.
  • 3Braitenberg, V.; Schtiz, A. Cortex." Statistics and Geometry of Neuronal Connectivity, 2nd ed.; Springer: Berlin, 1998.
  • 4Cajal, S. R. Cajal on the Cerebral Cortex. an Annotated I Translation of the Complete Writings, DeFi|ipe, J., Jones, E.G., Eds.; Oxford University Press: NY, 1988. [.
  • 5Brown, S. P.; Hestrin, S. Cell-Type Identity: A Key to Unlocking the Function of Neocortical Circuits. Curr. Opin. Neurobiol. 2009, 19, 415-421.
  • 6Somogyi, P.; Klausberger, T. Defined Types of Cortical Interneurone Structure Space and Spike Timing in the Hippocampus. J. Physiol. 2005, 562, 9-26.
  • 7Gross, G. W.; Rieske, E.; Kreutzberg, G. W.; Meyer, A. A New Fixed-Array Multi-Microelectrode System Designed for Long-Term Monitoring of Extracellular Single Unit Neuronal Activity in Vitro. Neurosci. Lett. 1977, 6, 101-105.
  • 8Pine, J. Recording Action Neurons with Extracellular Potentials from Cultured Microcircuit Electrodes. J.Neurosci. Meth. 1980, 2, 19-31.
  • 9Shahaf, G.; Marom, S. Learning in Networks of Cortical Neurons. J. Neurosci. 2001, 21, 8782-8788.
  • 10Xia, Y.; Gross, G. W. Histiotypic Electrophysiological Responses of Cultured Neuronal Networks to Ethanol. Alcohol. 2003, 30, 1-8.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部