期刊文献+

ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+ 1 CONJECTURE 被引量:1

ON THE NONEXISTENCE OF NONTRIVIAL SMALL CYCLES OF THE μ FUNCTION IN 3x+ 1 CONJECTURE
原文传递
导出
摘要 This paper studies the property of the recursive sequences in the 3x + 1 conjecture. The authors introduce the concept of μ function, with which the 3x + 1 conjecture can be transformed into two other conjectures: one is eventually periodic conjecture of the μ function and the other is periodic point conjecture. The authors prove that the 3x + 1 conjecture is equivalent to the two conjectures above. In 2007, J. L. Simons proved the non-existence of nontrivial 2-cycle for the T function. In this paper, the authors prove that the μ function has nol-periodic points for 2 ≤ 1 ≤12. In 2005, J. L. Simons and B. M. M de Weger proved that there is no nontrivial/-cycle for the T function for 1 ≤68, and in this paper, the authors prove that there is no nontrivial l-cycle for the μ function for 2 ≤ 1≤ 102.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第6期1215-1222,共8页 系统科学与复杂性学报(英文版)
基金 supported by Natural Science Foundation of China under Grant Nos.60833008 and 60902024
关键词 Diophantine equation eventual period periodic point 3x 1 conjecture. 周期点 猜想 通项公式 递归数列 西门子 证明 作者 函数
  • 相关文献

参考文献16

  • 1L. Collatz, On the origin of the 3x+1 problem, Natural Science Edition, 1986, 12(3): 9-11.
  • 2J. C. Lagarias, The 3x + 1 problem and its generalizations, Amer. Math. Monthly, 1985, 92: 3-23.
  • 3R. K. Guy, Unsolved Problems in Number Theory (Second Edition), Springer, Berlin, 1944.
  • 4G. J. Wirsching, The Dynamical System Generated by the 3n + 1 Function, Springer-Verlag, New York, 1998.
  • 5K. R. Matthews, The generalized 3x+l Mapping, http://www.Number theory.org/pdfs/survey. pdf.
  • 6R. N. Buttsworth and K. R. Matthews, On some Markov matrices arising from the generalized Collatz mapping, Acta Arith., 1900, 55: 43-57.
  • 7G. M. Leighl A-vlarkov process underlying the generalized Syracuse algorithm, Acta Arith., 1985, 46:125 143.
  • 8K. R. Matthews, Some Borel measures associated with the generalized Collatz mapping, Colloquium Math., 1992, 63:191 202.
  • 9K. R. Matthews and G. M. Leigh, A generalization of the Syracuse algorithm in Fq[x], J. Number Theory, 1987, 25: 274-278.
  • 10K. R. Matthews and A. M. Watts, A generalization of Hasses's generalization of the Syracuse algorithm, Acta Arith., 1983, 43:167 175.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部