期刊文献+

一种利用相关性优化压缩感知测量矩阵的方法 被引量:9

Optimization method of measurement matrix used of mutual coherence matrix in the compressed sensing
下载PDF
导出
摘要 传统的采样方法要求采样频率不小于奈奎斯特频率的2倍,然而采集到的数据存在很大程度的冗余。压缩感知方法则利用少量的非适应线性测量就能够实现对原始信号压缩采样,进而也能精确的恢复出原始信号,因此压缩感知中测量矩阵的研究具有重要的理论意义。提出了一种基于梯度迭代实现对测量矩阵的优化方法。实验表明利用梯度迭代方法优化的测量矩阵恢复得到图像的PSNR,高于Valid提出方法恢复图像的PSNR,以及未优化的测量矩阵恢复图像的PSNR。另外梯度迭代方法改善了G矩阵中非对角元素的分布情况,更集中分布在0附近,达到了测量矩阵与稀疏矩阵的互相关系数减小的目的。 Traditional sampling method request that the sampling rate should not be less than twice the Nyquist sampling rate,which result in lots of redundancy data. Making use of less nonlinear measurements, the compressed sensing method can realize the original signal compressed sampled at the same time,then recovered the original signal precisely. So the research of measurement matrix of compressed sensing has important theoretical significance. A novel method of gradient-based iteration has been proposed in the paper to optimize measurement matrix. And the experimental results show that PSNR of recovered image, which is achieved by the method of gradient-based iteration,is higher than non- optimized as the well as Valid's method's. In addition, the gradient-based iteration proposed in the paper makes more off-diagonal entries of G distribute around zero,achieving the purpose of getting the mutual coherence more smaller.
出处 《电子测量技术》 2012年第11期116-119,共4页 Electronic Measurement Technology
关键词 压缩感知 测量矩阵 互相关系数 compressed sensing measurement matrix mutual coherence
  • 相关文献

参考文献15

  • 1DONOHO D L. Compressed sensing[J]. IEEE Trans. on Information Theory,2006,52(4) :1289-1306.
  • 2BARANIUK R. Compressive sensing[J]. IEEE Signal Processing Magazine,2007,24(4) : 118-121.
  • 3CANDeS E. Compressive sampling[C]. Proceedings of International Congress of Mathematicians, Switzerland, 2006 : 1433-1452.
  • 4戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:215
  • 5CANDeS E,TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12) :4203-4215.
  • 6RAUHUT H,SCHNASS K V P. Compressed sensing and redundant dictionaries [J]. IEEE Trans. on Information Theory, 2008,54(5) :2210-2219.
  • 7TROPP J, ANNA GILBERT A. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans. on Information Theory, 2007,53(12) :4655-4666.
  • 8FORNASIER M,RAUHUT H. Iterative thresholding algorithms[J]. Applied and Computational Harmonic Analysis,2008(25) : 187-208.
  • 9BLUMENSATH T, DAVIES M E. Iterative hardthresholding for compressed sensing[C]. Acoustics, Speech and Signal Processing (ICASSP), 2011: 4028-4031.
  • 10芮国胜,王林,田文飚.一种基于基追踪压缩感知信号重构的改进算法[J].电子测量技术,2010,33(4):38-41. 被引量:23

二级参考文献54

  • 1DONOHO D L.Compressed sensing[J].IEEE Trans.on Information Theory,2006,52(4):1289-1306.
  • 2CANDèS E.Compressive sampling[C].Proceedings of the International Congress of Mathematicians,Madrid,Spain,2006,3:1433-1452.
  • 3CANDèS E J,TAO T.Near optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans.Info.Theory.2006,52(12):5406-5425.
  • 4CANDèS E,ROMBERG J,TERENCE T.Robust uncertainty princi-ples:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.on Information Theory,2006,52(2):489-509.
  • 5CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 6DONOHO D L,TSAIG Y.Extensions of compressed sensing[J].Signal Processing.2006,86(3):533-548.
  • 7CANDèS E J,ROMBERG J.Practical signal recovery from random projections[OL].http://www.acm.caltech.edu/-emmanuel/papers/PracticalRecovery.pdf.
  • 8FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,1(4):586-598.
  • 9BLOOMFIELD P,STEIGER W.Least Absolute Deviations:Theory,Applications,and Algorithms[M].Boston:Birkhauser,1983.
  • 10Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.

共引文献236

同被引文献92

  • 1CANDI~S E J. Compressive sampling proceedings of the international congress of mathematicians[C]. 2006 (3) : 1433-1452.
  • 2CANDI~S, E J, ROMBERG J, TAO T. Robust Uncer- tainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information. IEEE Trans. on Information Theory, 2006.52 (2) : 489-509.
  • 3CANDIES E. The restricted isometry property and its implications for compressed sensing[J]. Comptes ren- dus. Mathematique, 2008. 346(10) : 589-592.
  • 4TROPP J, LASKA J, DUADE M, et al. Beyond Nyquist: Efficient sampling of sparse band limited sig- nals[J]. IEEE Trans. on Information Theory. 2010, 56(1) :520-544.
  • 5MISHALI M,ELDAR Y C~ Blind multi-band signal recon- struction.-Compressed sen.sing for analog Signals[J]. IEEE Trans. on Signal Proees~ 2009,57(30):993-1009.
  • 6MISHALI M,ELDAR Y C. From theory to practice. Sub-nyquist sampling of sparse wideband analog sig- nals[J]. IEEE Journal of Selected Topics in Signal Processing. 2010,4(2) ..375-391.
  • 7BARANIUK R. Compressive sensing[J]. IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 8BERINDE R,INDYK P. Sparse recovery using sparse random matrices, preprint,2008.
  • 9GALLAGER R. Low-density parity-check codes I-J]. Information Theory. IRE Transactions on, 1962, 8 ( 1 ) : 21-28.
  • 10TANNER R. A recursive approach to low complexity codes[-J:. Information Theory,IEEE Transactions on, 1981,27(5) ..533-547.

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部