期刊文献+

复合材料盒段试验夹具非线性变形机理与补强措施

Nonlinear Deformation of Rig for a Composite Wing Box Test and Its Reinforcement
下载PDF
导出
摘要 在一复合材料盒段结构弯曲试验中,高载荷下试验件并未失效,但试件和夹具整体结构刚度低于预试试验值,呈现逐渐降低趋势,过大的变形消耗了作动缸行程,致使最大加载载荷低于预期值,卸载后整体结构有残余变形。根据有限元计算结果和试验数据,对多种可能的原因进行分析。结论为夹具金属盒段中,连接上、下壁板与纵墙缘条时使用了全螺纹螺栓,尽管极限强度满足要求,但螺纹在高载荷下产生了塑性变形,导致螺栓限位能力不足,夹具变形偏大。针对该原因,在不拆卸试验结构的情况下,更换夹具金属盒段中部分全螺纹螺栓为抗剪螺栓,再次进行试验。结果显示,结构变形的非线性现象消失,最大加载载荷提高16.6%,卸载后夹具无残余形变,证明了原因预测与夹具补强方案的正确性。 In the bending test of a composite wing box,the structure stiffness under high level load was lower than the value in trial test,and decreased gradually without structure damage.The larger deformation wasted the stroke of actuators and the maximum load did not reach the predicted level.After unloading,the residual deformation of the whole structure was observed.Based on the finite element analysis and test data,several possible reasons were studied.The eventual inference focused on the full-length threaded bolts connecting skin panels and beam flanges in the rigging metal box at the pin-load.The ultimate strength of bolts was enough,but the threads yielded and the bolts could not restrain the skin and beam firmly,which resulted in the larger deformation.The experiment was conducted again after the full-length threaded bolts were partly replaced by shear-bolts without disassembling the whole structure.No evident nonlinear response and residual deformation were observed in the test with the maximum load increasing by 16.6 percent,hence the inference and reinforcing method was validated.
出处 《实验室研究与探索》 CAS 北大核心 2012年第11期54-57,65,共5页 Research and Exploration In Laboratory
关键词 复合材料 盒段 弯曲试验 夹具 补强 composite box bending test rig reinforcement
  • 相关文献

参考文献15

  • 1杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12. 被引量:998
  • 2陈绍杰.复合材料技术与大型飞机[J].航空学报,2008,29(3):605-610. 被引量:130
  • 3沈真.复合材料设计手册[M].北京:航空工业出版社,2001.
  • 4沈军,谢怀勤.航空用复合材料的研究与应用进展[J].玻璃钢/复合材料,2006(5):48-54. 被引量:86
  • 5罗楚养,熊峻江,益小苏,张子龙,刘刚.RTM整体成型复合材料翼盒的固有模态及稳定性[J].复合材料学报,2012,29(3):158-166. 被引量:3
  • 6Koundouros M,Falzon B G,Soutis C.Predicting the ultimate loadof a CFRP wingbox[J].Composites Part A,2004,35(1):895-903.
  • 7Icardi U,Ferrero L.Preliminary study of an adaptive wing withshape memory alloy torsion actuators[J].Materials&Design,2009,30(10):4200-4210.
  • 8Ovesy H R,Assaee H.Buckling charac-teristics of some compositestiffened boxes under longitudinal compression or bending using finitestrip approach[C] //44th AIAA/ASME/ASCE/AHS Structures,Structural Dy-namics,and Materials Conference.Norfolk,2003:AIAA 2003-1791.
  • 9Peter W G De Baets,Rupinder S Battoo,Dimitri N Mavris.Aeroelastic analysis of a composite wingbox with varying root flexi-bility[J].AIAA,2000,16(23):1-9.
  • 10Haddadpour H,Kouchakzadeh M A,Shadmehri F.Aeroelasticinstability of aircraft composite wings in an incompressible flow[J].Composite Structures,2008,83(1):93-99.

二级参考文献81

共引文献1182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部