期刊文献+

图像小波去噪的算子描述 被引量:4

Operator Description of Image Wavelet Denoising
下载PDF
导出
摘要 给出了一种基于二维离散小波变换的图像去噪方法,并用算子的形式加以描述,通过对小波变换系数进行阈值处理实现图像的去噪.讨论了不同的阈值选取方法和阈值策略,并提出了一种自适应局部阈值法.用均方差衡量去噪性能,实验结果证明:用自适应局部阈值法去噪好于全局阈值法去噪. The scheme of image denoising based on two -dimensional discrete wavelet transform is suggested. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selection and thresholding methods are discussed. A new adaptive local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the adaptive local threshold scheme is demonstrated, and compare with the universal threshold scheme. The experiment shows that image denoising using the former scheme performs better than the one using the latter scheme.
出处 《哈尔滨理工大学学报》 CAS 2000年第3期8-12,共5页 Journal of Harbin University of Science and Technology
关键词 小波变换 图像去噪 算子 阈值 Wavelet transform, image denoising, operator, threshold
  • 相关文献

参考文献8

  • 1MALLATS,HWANGWL.SingularityDetectionandProcessingwithWavelets[C],IEEETrans.Inform.Theory,1992,38:617~643
  • 2GROSSMANA.WaveletTransformandEdgeDetection.InStochasticProcessesinPhysicsandEngineering[M].Sodrecht:Reidel,1986
  • 3DAUBECHIESI.TenLecturesonWavelets[C].SIAM.1992
  • 4JOSHIRLetal.ComparisonofDifferentMethodsofClassificationinSubbandCodingofImages[C].IEEETrans.ImageProcessing.1997,6:1473~1486
  • 5BRUCEA,GAOHY.WaveShrink:ShrinkageFunctionsandThresholds[C].SPIE,1996,2569:270~281
  • 6DONOHODL,JOHNSTONEIM.IdealSpatialAdaptionViaWaveletShrinkage[M].Biometrika,1994,81:425~455
  • 7MALLATS.ATheoryforMultiresolutionSignalDecomposition:theWaveletRepresentation[M].IEEETrans.onPatternAnalysisandMachineIntelligence.1989,11(7):674~693
  • 8DONOHODL.DenoisingbySoftThresholding[C].IEEETransactionsonInformationTheory.1995,41:613~627

同被引文献23

  • 1MALLAT S.A Wavelet Tour of Signal Processing(Second Edition)[M]. China Machine Press, 2002.
  • 2DAUB ECHIES I, SWELDENS W. Factoring Wavelet Transforms into Lifting Steps[J].J. Fourier Anal, 1998, 4(3):245-267.
  • 3SWELDENS W. The Lifting Scheme: a Custom-design Construction of Biorthogonal Wavelets[R]. Department of Mathematics, University of South Carolina: Industrial Mathematics Initiative, 1994.
  • 4SWELDENS W. The Lifting Scheme: a Construction of Second Generation Wavelets[J]. SIAM Journal of Mathematical Analysis, 1997, 29(2):511-546.
  • 5Gilbert Strang, Vasily Strela. Short wavelets and matrix dilation equation[J]. IEEE Transactions on Signal Processing, 1995,43(1):108-115.
  • 6Strela V, Heller P N, Strang G, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Trans. Imaging processing, 1999,8(4):548-563.
  • 7Jie Liang, Thomas W. Parks. A translation-invariant wavelet representation algorithm with application[J]. IEEE Transactions on Signal Processing,1996,44(2):225-232.
  • 8Nason G P, Silverman B W. The Stationary Wavelet Transform and Some Statistical Applications[M]. Lecture notes in statistics. A. Antoniadis Ed. Berlin:Springer Verlag, 1995,281-299.
  • 9Strela V, Walden A T. Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet transforms[R]. Imperial College, Statistics Section, Technical Report TR-98-01(1998).
  • 10Strela V. Multiawavelet: Theory and Application[D].Ph.D Thesis MIT, 1996.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部