摘要
本文提出了集值映射的一种二阶导数,并讨论了其相关性质.运用此二阶导数以及二阶相依导数,作者建立了实赋范空间中集值优化问题的二阶必要最优性条件;同时,在有限维赋范空间中,建立了集值优化问题的二阶充分最优性条件.
In this paper, a second-order derivative for set-valued maps is proposed and its properties are discussed. By using this derivative and second-order contingent derivative, some second-order necessary optimality conditions for set-valued optimization problems in real normed spaces are obtained. Simulta- neously, some second-order sufficient optimality conditions for set-valued optimization problems in fi- nite-dimensional normed spaces are established.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第6期1181-1188,共8页
Journal of Sichuan University(Natural Science Edition)
基金
中央高校基本科研业务费资助项目(CDJXS11100034)
关键词
二阶相依集
二阶渐近相依导数
集值优化
最优性条件
second-order contingent set, second-order asymptotic contingent derivative, set-valued opti- mization, optimality condition