摘要
Web文本分类是数据挖掘研究的一个热点问题.针对文本向量维度过高的特点,提出一种改进的模糊聚类RBF网络集成的文本分类方法,该方法利用模糊C均值聚类算法对文本特征向量进行简化、抽取,引入自适应遗传算法优化RBF神经网络的权值,构建RBF网络集成模型对文本进行分类.实验结果表明,该方法具有更高的分类效率和正确率.
Web text classification is a hot issue in the research on data mining. In view of the characteris- tics of high dimension text vector, the paper proposes an improved text classification method of fuzzy cluster RBF network integration. The method uses fuzzy c-means clustering algorithm to simplify and extract the text eigenvector, introduces adaptive genetic algorithm for optimization of RBF Neural net- work weights, and builds a RBF network model for text classification. Experimental results show that the method possesses a higher ela^if;o.~;.,~ ~gg;~: ,
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第6期1235-1239,共5页
Journal of Sichuan University(Natural Science Edition)
基金
广西教育厅科研项目(200911LX486
201106LX745
201204LX593)