期刊文献+

一种立体像对极线矫正的新方法 被引量:1

A new rectification algorithm of epipolar lines on stereo-image pair
原文传递
导出
摘要 提出一种无相机标定的立体像对矫正算法,该算法只需要图像对间的匹配点信息.首先,寻找一个投影矩阵H′将右图的对极点e′映射到无穷远点,此时该图上的对极线被映射为平行于x轴的直线;然后,基于矫正后立体像对的对应极线相同的原理,推导出应用在左图上的矫正矩阵H;最后,根据得到的投影矩阵H和H′重新采样对应的图像,达到最终的矫正目的.尤其对摄像机对的角度进行分析,摄像机主轴夹角越小,对极点则离图像平面越远,矫正效果也越好.通过两种无需计算基本矩阵的非线性最优化矫正方法进行实验对比,实验结果表明,该算法实现简单、矫正速度快、并且有效地消除了垂直误差. Propose a rectification algorithm base on a pair of stereo images without calibration of camer- as. This method only needs the matching points of image pair,and has three steps. First, find a projec- tion matrix H' which transform the epipole in right image to infinite point, and the epipolar lines of this image become parallel to the x axis. Then, base on the fact that corresponding epipolar lines in rectified image are identical, the corresponding projection matrix H is followed to rectify the left image. At last, each image is re-sampled with the projection matrix H and H' to achieve image rectification. Further- more, by studying the relative position of cameras, the authors find that, the smaller the angle of princi- pal axes of camera pairs is, the farer the distance between epipole and image plane is, and the better the rectification result is. According to the comparison with two typical rectification methods that use funda- mental matrix with nonlinear optimization theory, this algorithm is rapid to rectify, and effectively elim- inate the vertical errors.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期1240-1246,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61173182 61179071) 四川省应用基础项目(2011JY0124) 四川省国际科技合作与交流研究计划(2012HH0004)
关键词 对极几何 图像矫正 对极线匹配 投影变换 基本矩阵 epipolar geometry, image rectification, epipolar lines matching, projective transformation, fundamental matrix
  • 相关文献

参考文献14

  • 1Fusiello A, Trucco E, Verri A. A compact algorithm for rectification of stereo pairs[J]. Machine Vision Applications, 2000 . 12(1) :16.
  • 2Loop C, Zhang Z Y. Computing rectifying homogra- phies for stereo vision[C]. Boston :IEEE Computer Society Press, 1999.
  • 3Francesco I, Trucco E. Projective rectification with- out epipolar geometry[C]. Boston :IEEE Computer Society Press, 1999.
  • 4Pollefeys M, Koch R, Gool L V. A simple and effi- cient rectification method for general motion[C] . Corfu Greece:Es. n. 1, 1999.
  • 5Lin G Y, Chen X Z, Wei G. A robust epipolar recti- fication method of stereo pairs[C]//CORD Confer- ence Proceedings. Boston: IEEE Computer Society Press, 2010.
  • 6Hartley R, Zisserman A. Multiple View geometry in computer vision[M]. [s. 1. ]: Cambridge University Press, 2003.
  • 7Zhu M, Ge Y J, Huang S F, et al. rectification based on epipolar lines ma variables projective matrix[C]. Boston puter Society Press, 2007. Stereo Vision tch and three : IEEE Com-.
  • 8Bay H, Tuytelaars T, Gool L. SRUF: speeded up robust features [C]. Boston : IEEE Computer Socie- ty Press, 2006.
  • 9Lowe D. Distinctive image features from scale-invari- ant keypoints [J]. International Journal o{ Computer Vision, 2004, 60(2): 91.
  • 10Fischler M,Bolles R. Random sample consensus: a paradigm for model fitting with applications to im- age analysis and automated cartography [C]. CACM, 1981, 24(6): 881.

二级参考文献11

  • 1Lowe D.Distinctive image features from scale-invariant key points[J].International Journal on Computer Vision,2004,60(2):91.
  • 2Harris C,Stephens M.A combined corner and edge detector[C].Manchester,UK:plessey research roke manor,1988.
  • 3Moravec H P.Towards automatic visual obstacle avoidance[C].Cambridge,Massachusetts,USA:Artificial intelligence,Springer,1977.
  • 4Lowe D G.Object recognition from local scale-invariant features[C].Corfu,Greece:ICCV,Springer,1999.
  • 5Mikolajezyk K,Schmid C.Scale 8L affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63.
  • 6Ke Y,Sukthankar R.PCA-SIFT:amore distinctive representation for local image descriptors[J].Computer Vision and Pattern Recognition,2004,6 (2):506.
  • 7Stefano D L,Mattoccia S,Tombari F.Zncc-based template matching using bounded partial correlation[J].Pattern Recognition Letters,2005,26 (14):2129.
  • 8Fransens R,Strecha C,Caenen G,et al.A generic approach towards automatic image co-registration[C].Antwerp,Belgium:2nd International Workshop,Springer,2006.
  • 9Longuet-Higgins H C.A computer algorithm for reconstructing a scene from two projections[J].Nature,1981,293:133.
  • 10Hartley R.Estimation of relative camera positions for uncalibrated cameras[C].Santa Margherita Ligure,Italy:ECCV,Springer,1992.

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部