期刊文献+

两个非线性偏微分方程的分离变量解 被引量:14

Solutions of Two Nonlinear Partial Differential Equations in the Form of Separated Variables
下载PDF
导出
摘要 三维旋度方程的一维模型研究中 ,引出的两个非线性偏微分方程 (PDE) ,分别被看做是Burgers方程和KdV方程的二维推广 ,它们都存在分离变量形式的精确解。这些解可分别借助线性热导方程和相应的线性KdV方程的解去构造。若给定分离变量形式的初值函数 ,则初值问题的精确解也是分离变量形式的。 Two nonlinear PDEs arising from one dimensional model for the three dimensional vorticity equation have exact solutions in the form of separated variables. Since these PDEs can be regarded as a generalization of Burgers equation and KdV equation to two dimensional cases, the construction of such solutions can be reduced to those of the linear heat conduction equation and linear KdV equation respectively. If the initial value function of an initial value problem is in the form of separated variables, then its exact solution is also in the form of separated variables.
出处 《洛阳工学院学报》 2000年第2期88-90,共3页 Journal of Luoyang Institute of Technology
基金 甘肃省自然科学基金资助项目!(ZR -97-0 0 2 )
关键词 非线性 偏微分方程 分离变量法 初值问题 方程解 Non linear partial differential equations Separation of variables Initial value problems Solution of equation
  • 相关文献

参考文献4

  • 1[1] Salvatore De Gregorio. A Partial Differential Equation Arising in a ID Model for the 3D Vorticity Equation[J].Mathematical Methods in the Applied Sciences , 1996,19(15):1233~1255.
  • 2[2] De Greorip S. On a One-Dimensional Model for the Three-Dimensional Vorticity Equation[J].J Stat Phys,1990,59:1251~1263.
  • 3[3] Constantin P, Lax P D Majda. A. A Simple One-dimensional Model for the Three-dimensional Vorticity Equation[M]. Comm Pure Appl Math,1985, 38: 715~724.
  • 4[5] Abramowitz M, Stegun I A. Handbook of Mathematical Function[M]. New York: Dover Publications Inc, 1972.

同被引文献54

引证文献14

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部