期刊文献+

Optimal portfolio and consumption selection with default risk 被引量:3

Optimal portfolio and consumption selection with default risk
原文传递
导出
摘要 We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming principle is applied to derive a pair of second-order parabolic Hamilton-Jacobi- Bellman (HJB) equations with gradient constraints. We explore these HJB equations by a viscosity solution approach and characterize the post-default and pre-default value functions as a unique pair of constrained viscosity solutions to the HJB equations. We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming principle is applied to derive a pair of second-order parabolic Hamilton-Jacobi- Bellman (HJB) equations with gradient constraints. We explore these HJB equations by a viscosity solution approach and characterize the post-default and pre-default value functions as a unique pair of constrained viscosity solutions to the HJB equations.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第6期1019-1042,共24页 中国高等学校学术文摘·数学(英文)
关键词 Defaultable security average past consumption Hamilton-Jacobi- Bellman (HJB) equation post(pre)-default constrained viscosity solution Defaultable security, average past consumption, Hamilton-Jacobi- Bellman (HJB) equation, post(pre)-default, constrained viscosity solution
  • 相关文献

参考文献30

  • 1Atar R, Budhiraja A, Williams R J. HJB equations for certain singularly controlled diffusions. Ann Appl Probab, 2007, 17(5-6): 1745-1776.
  • 2Belanger A, Shreve S, Wong D. A general framework for pricing credit risk. Math Finance, 2004, 14(3): 317-350.
  • 3Benth F E, Karlsen K H, Reikvam K. Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach. Finance Stoch, 2001, 5:275-303.
  • 4Biagini F, Cretarola A. Quadratic hedging methods for defaultable claims. Appl Math Optim, 2007, 56(3): 425-443.
  • 5Biagini F, Cretarola A. Local risk-minimization for defaultable claims with recovery process. Appl Math Optim, 2012, 65(3): 293-314.
  • 6Bielecki T, Jang I. Portfolio optimization with a defaultable security. Asia-Pacific Finan Markets, 2006, 13:113-127.
  • 7Bielecki T, Jeanblanc M, Rutkowski M. Hedging for Defaultable Claims. Lecture Notes in Math, Vol 1847. Berlin: Springer, 2004.
  • 8Bielecki T, Jeanblanc M, Rutkowski M. Credit Risk Modeling. CSFI Lecture Notes Series. Osaka: Osaka University Press, 2009.
  • 9Bielecki T, Rutkowski M. Credit Risk: Modeling, Valuation and Hedging. New York: Springer, 2002.
  • 10Bo L, Wang Y, Yang X. An optimal portfolio problem in a defaultable market. Adv Appl Probab, 2010, 42(3): 689-705.

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部