期刊文献+

Diffusion bound and reducibility for discrete Schrodinger equations with tangent potential

Diffusion bound and reducibility for discrete Schrodinger equations with tangent potential
原文传递
导出
摘要 In this paper, we consider the lattice SchrSdinger equations iqn(t) = tan π(na+x)qn(t) +ε(qn+1(t) + qn-1(t)) +δVn(t)|qn(t)|2τ-2qn(t),with a satisfying a certain Diophantine condition, x∈ R/Z, and t- = 1 or 2, where vn(t) is a spatial localized real bounded potential satisfying |vn(t)| Ce-plnl. We prove that the growth of H1 norm of the solution {qn(t)}n∈Z is at most logarithmic if the initial data {qn(0)}n∈Z ∈ H1 for e sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., In this paper, we consider the lattice SchrSdinger equations iqn(t) = tan π(na+x)qn(t) +ε(qn+1(t) + qn-1(t)) +δVn(t)|qn(t)|2τ-2qn(t),with a satisfying a certain Diophantine condition, x∈ R/Z, and t- = 1 or 2, where vn(t) is a spatial localized real bounded potential satisfying |vn(t)| Ce-plnl. We prove that the growth of H1 norm of the solution {qn(t)}n∈Z is at most logarithmic if the initial data {qn(0)}n∈Z ∈ H1 for e sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e.,
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第6期1213-1235,共23页 中国高等学校学术文摘·数学(英文)
关键词 Tangent potential REDUCIBILITY Sobolev norm Birkhoff normal form Tangent potential, reducibility, Sobolev norm, Birkhoff normal form
  • 相关文献

参考文献19

  • 1Bellissard J, Lima R, Scoppola E. Localization in v-dimensional incommensurate structures. Comm Math Phys, 1983, 88:465-477.
  • 2Bourgain J. Growth of Sobolev norms in linear Schrodinger equation with quasi-periodic potential. Comm Math Phys, 1999, 204:207-247.
  • 3Bourgain J. On growth of Sobolev norms in linear Schrodinger equation with time dependent potential. J Anal Math, 1999, 77:315-348.
  • 4Bourgain J, Wang Weimin. Anderson localization for time quasi-periodic random Schrodinger and wave equations. Comm Math Phys, 2004, 3:429-466.
  • 5Bourgain J, Wang Weimin. Diffusion bound for a nonlinear Schrodinger equation. In: Mathematical Aspect of Nonlinear Dispersive Equations. Ann of Math Stud, Vol 163. Princeton: Princeton University Press, 2007, 21-42.
  • 6Devillard P, Souillard B J. Polynomially decaying transmission for the nonlinear Schrodinger equation in a random medium. J Stat Phys, 1986, 43:423-439.
  • 7Eliasson L H, Kuksin S B. On reducibility of Schrodinger equations with quasi-periodic in time potentials. Comm Math Phys, 2009, 286:125-135.
  • 8Frohlich J, Spencer T, Wayne C E. Localization in disordered, nonlinear dynamical systems. J Star Phys, 1986, 42:247-274.
  • 9Geng Jiansheng, Viveros J, Yi Yingfei. Quasi-periodic breathers in Hamiltonian networks of long-range coupling. Phys D, 2008, 237:2866-2892.
  • 10Geng Jiansheng, Zhao Zhiyan. Quasi-periodic solutions for One dimensional discrete nonlinear Schr6dinger equations with tangent potential. Preprint.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部