期刊文献+

应力-强度模型的Bayes可靠性分析 被引量:8

Bayesian Reliability Analysis for Stress-strength Models
下载PDF
导出
摘要 当应力、强度分别服从于正态分布、指数分布和Weibull分布时 ,分析了应力 -强度模型的可靠性评估 ,着重讨论了无信息验前下的Bayes可靠性评估。仿真结果表明 ,无信息验前下的评估结论可以很好地用频率学派的观点来解释。 The reliability for stress strength models is analyzed when the stress and strength follow normal, exponential and Weibull distributions respectively. The discussions focus on Bayesian analysis adopting noninformative priors. The results of simulation show that the conclusion under noninformative priors can be explained according to the frequentist view.
作者 张士峰
出处 《国防科技大学学报》 EI CAS CSCD 2000年第3期84-89,共6页 Journal of National University of Defense Technology
基金 国家部委基金
关键词 应力-强度模型 BAYES分析 可靠性 stress strength models Bayesian analysis reliability noninformative priors
  • 相关文献

参考文献7

  • 1[1] Birnbaum Z M. On a Use of the Mann-Whitney Statistic[C], Proce edings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volu me I, 13~17, Berkeley, California: University of California Press, 1956.
  • 2[2] Basu A P. Estimation of the Reliability of Complex System -a Sur vey[J]. The Frontiers of Modern Statistical Inference Procedures, 271-287, Am erican Science press, Columbus, 1985.
  • 3[3] Johnson R A. Stress-strength Models for Reliability, Handbook of Statistics, Volume 7: Quality Control and Reliability[M]. New York: Elsevier Science Pub. Co., Inc., 1988.
  • 4[4] Jeffreys H. Theory of Probability[M]. London: Oxford University Press, 1961.
  • 5[5] Berger J O, Bernardo J M. On the Development of Reference Priors( with discussion), Bayesian Statistics IV[M]. Oxford University Press, Oxford, 1992.
  • 6[6] Lee G. Noninformative Priors for Some Models Useful in Reliabilit y and Survival Analysis[D]. Ph. D. dissertation, The University of Missouri-C olumbia, 1996.
  • 7[7] Sun D, Ghosh M, Basu A P. Bayesian Analysis for a Stress-stre ngth System Under Noninformative Priors[R]. Tech. Report No. 518, Department o f Statistics, University of Florida, 1996.

同被引文献33

  • 1傅惠民.正态分布百分位值和百分率的置信限和容忍限公式[J].航空学报,1994,15(1):94-101. 被引量:40
  • 2王玲玲,王炳兴.无失效数据的统计分析—修正似然函数方法[J].数理统计与应用概率,1996,11(1):64-70. 被引量:57
  • 3李中恢,任海平,周慧.一类应力—强度干涉模型的Bayes可靠性分析[J].上饶师范学院学报,2007,27(3):14-17. 被引量:1
  • 4[1]Birnbaum Z M.On a use of the Mamn-Whitney Statistic[C],Proceedings of the third Berjeky Symposium on Mathematical Statistics and Probability.Volume 1,13-17,Berkeley,California:University of California Press,1956.
  • 5[2]Basu A.P.Estimation of the Reliability of Complex System-a Survey[J].The Froutier of Modern Statistical Inference Procedures.271~287,American SciencePress,Columhusms,1985.
  • 6[3]Johnson R.A.Stress-strength Models for Reliability.Handbooks of Statistics,Volime 7:Quality Control and Reliability[M].NewYork:Elservier Science Pub.Co.,Inc,1988.
  • 7[4]K.E.AHMAD,M.E.Fakhry and Z.F.Jaheen.Bayes Estimation of P (Y》X) in the Geometric Case[J].Microelectron.Relib.,1995 (35):817-820.
  • 8[5]K.E.ajmad,M.E.fakhry,Z.f.Jaheen.Empirical Bayes estimation of Burr-type X model[J].Journal of Statistical Planning and Inference,1997 (64):297-308.
  • 9Landers T. discretizing approach for stress-strength a- nalysis[J]. IEEE Transaction on Reliability,1996,45: 84 -89.
  • 10Lewis E E, Chen H C. Load-capacity interference and the bathtub curve [ J ]. IEEE Transaction on Reliability, 1994,43 ( 3 ) :470-475.

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部