期刊文献+

STATISTIC CHARACTERISTICS OF MCSS OVER ASIA AND WESTERN PACIFIC REGION 被引量:1

STATISTIC CHARACTERISTICS OF MCSS OVER ASIA AND WESTERN PACIFIC REGION
下载PDF
导出
摘要 Mesoscale convective systems (MCSs) are severe disaster-producing weather systems. Previous attempts of MCS census are made by examining infrared satellite imageries artificially, with subjectivity involved in the process unavoidably. This method is also inefficient and time-consuming. The disadvantages make it impossible to do MCS census over Asia and western Pacific region (AWPR) with an extended span of time, which is not favorable for gaining a deeper insight into these systems. In this paper, a fire-new automatic MCS identification (AMI) method is used to capture four categories of MCSs with different sizes and shapes from numerical satellite infrared data. 47,468 MCSs are identified over Asia and western Pacific region during the warm season (May to October) from 1995 to 2008. Based on this database, MCS characteristics such as shape, size, duration, velocity, geographical distribution, intermonthly variation, and lifecycle are studied. Results indicate that the number of linear MCSs is 2.5 times that of circular MCSs. The former is of a larger size while the latter is of a longer duration. The 500 hPa steering flow plays an important role in the MCS movement. MCSs tend to move faster after they reach the maximum extent. Four categories of MCS have similar characteristics of geographical distribution and intermonthly variation. Basically, MCSs are zonally distributed, with three zones weakening from south to north. The intermonthly variation of MCSs is related to the seasonal adjustment of the large-scale circulation. As to the MCSs over China, they have different lifecycle characteristics over different areas. MCSs over plateaus and hill areas, with only one peak in their lifecycle curves, tend to form in the afternoon, mature at nightfall, and dissipate at night. On the other hand, MCSs over plains, which have several peaks in their lifecycle curves, may form either in the afternoon or at night, whereas MCSs over the oceans tend to form at midnight. Affected by the sea-land breeze circulation, MCSs over coastal areas of Guangdong and Guangxi always come into being at about 1500 or 1600 (local time), while MCSs over the Sichuan Basin, affected by the mountain-valley breeze circulation, generally initiate nocturnally. Mesoscale convective systems (MCSs) are severe disaster-producing weather systems. Previous attempts of MCS census are made by examining infrared satellite imageries artificially, with subjectivity involved in the process unavoidably. This method is also inefficient and time-consuming. The disadvantages make it impossible to do MCS census over Asia and western Pacific region (AWPR) with an extended span of time, which is not favorable for gaining a deeper insight into these systems. In this paper, a fire-new automatic MCS identification (AMI) method is used to capture four categories of MCSs with different sizes and shapes from numerical satellite infrared data. 47,468 MCSs are identified over Asia and western Pacific region during the warm season (May to October) from 1995 to 2008. Based on this database, MCS characteristics such as shape, size, duration, velocity, geographical distribution, intermonthly variation, and lifecycle are studied. Results indicate that the number of linear MCSs is 2.5 times that of circular MCSs. The former is of a larger size while the latter is of a longer duration. The 500 hPa steering flow plays an important role in the MCS movement. MCSs tend to move faster after they reach the maximum extent. Four categories of MCS have similar characteristics of geographical distribution and intermonthly variation. Basically, MCSs are zonally distributed, with three zones weakening from south to north. The intermonthly variation of MCSs is related to the seasonal adjustment of the large-scale circulation. As to the MCSs over China, they have different lifecycle characteristics over different areas. MCSs over plateaus and hill areas, with only one peak in their lifecycle curves, tend to form in the afternoon, mature at nightfall, and dissipate at night. On the other hand, MCSs over plains, which have several peaks in their lifecycle curves, may form either in the afternoon or at night, whereas MCSs over the oceans tend to form at midnight. Affected by the sea-land breeze circulation, MCSs over coastal areas of Guangdong and Guangxi always come into being at about 1500 or 1600 (local time), while MCSs over the Sichuan Basin, affected by the mountain-valley breeze circulation, generally initiate nocturnally.
出处 《Journal of Tropical Meteorology》 SCIE 2012年第4期457-472,共16页 热带气象学报(英文版)
基金 National Natural Science Founds of China (40875028) Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
关键词 热带气象 气象学 天气学 气团 mesoscale convective systems automatic MCS identification (AMI) method velocity geographicaldistribution intermonthly variation lifecycle
  • 相关文献

参考文献3

二级参考文献14

共引文献55

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部