期刊文献+

基于ADP方法求解未知非线性零和微分对策问题 被引量:1

ADP Approach to Solve Unknown Nonlinear Zero-Sum Game
下载PDF
导出
摘要 针对一类未知非线性系统的二人零和微分对策问题,提出了一种基于近似动态规划(ADP)方法的控制方案.该方案首先通过设计一个基于递归神经网络(RNN)模型的辨识方案来近似未知非线性系统动态.通过在RNN模型中增加一个新型的调整项,保证了所建立的RNN模型的动态与原未知系统动态的误差渐近收敛到零.然后在此RNN模型基础上,应用ADP方法求解鞍点存在或者不存在情况下的最优性能指标以及最优控制策略.最后通过一个仿真例子验证了所提方案的有效性. An approximate dynamic programming(ADP) approach was proposed for a class of unknown nonlinear zero-sum game.A model based on a recurrent neural network(RNN) was used to approximate the unknown system dynamics.A novel adjustable term related to the modeling error was added to the RNN model,which guaranteed the modeling error convergent to zero.Then,an ADP approach was given to solve the optimal performance index and the optimal control pair under the saddle point of the zero-sum game existence or not.Simulation results demonstrated the effectiveness of the proposed control scheme.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第12期1673-1676,1689,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61104010) 中央高校基本科研业务费专项资金资助项目(N100404024)
关键词 未知非线性系统 零和微分对策 递归神经网络 近似动态规划 鞍点 unknown nonlinear system zero-sum game recurrent neural network ADP saddle point
  • 相关文献

参考文献8

  • 1Owen G. Game theory [ M]. New York: Acadamic Press,1982.
  • 2Basar T, Bernhard P. Optimal control and related minimaxdesign problems[M]. Boston: BirkhAauser Press, 1995.
  • 3Zhang H G, Wei Q L, Liu D R. An iterative adaptivedynamic programming method for solving a class of nonlinearzero-sum differential games [ J]. Automatica , 2011, 47: 207-214.
  • 4Al-Tamimi A, Abu-Khalaf M, Lewis F L. Adaptive criticdesigns for discrete-time zero-sum games with application tocontrol [ J]. IEEE Transactions on Systems,Man,andCybernetics Part B : Cybernetics,2007,37(1) :240 - 247.
  • 5Zhang X,Zhang H G, Wang F Y. A new iteration approachto solve a class of finite-horizon continuous-time nonaffinenonlinear zero-sum game [ J]. International Journal ofInnovative, Computing, Information and Control, 2011,7.2):597-608.
  • 6Abu-Khalaf M, Lewis F L,Huang J. Policy iterations on theHamilton-Jacobi-Isaacs equation for state feedback control withinput saturation [ J]. IEEE Transactions on AutomaticControl, 2006,51(12):1989- 1995.
  • 7Zhang H G, Cui L L, Zhang X, et al. Data-driven robustapproximate optimal tracking control for unknown generalnonlinear systems using adaptive dynamic programmingmethod[J]. IEEE Transactions on Neural Network , 2011,22(12):2226-2236.
  • 8Hayakawa T, Haddad W M, Hovakimyan N. Neural networkadaptive control for a class of nonlinear uncertain dynamicalsystems with asymptotic stability guarantees [ J]. IEEETransactions on Neural Networks,2008,19(1) :80-89.

同被引文献8

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部