期刊文献+

量子人工鱼群算法 被引量:6

Quantum Artificial Fish School Algorithm
下载PDF
导出
摘要 融合量子计算与智能优化的新型高效优化算法层出不穷,成为现在优化算法研究的主流.为此,将量子计算引入到人工鱼群算法中,提出一种新型的量子进化算法———量子人工鱼群算法.该算法用量子计算的方法重新描述了人工鱼的行为,用量子比特对人工鱼进行编码,用量子旋转门实现人工鱼的更新操作,用量子非门进行人工鱼变异,从而实现了目标的优化求解.并分别以函数极值和TSP问题为例进行了仿真,验证了算法的有效性. Many newly-proposed algorithms,which combine both quantum computing and intelligent optimization,are becoming mainstream of optimization algorithm studies.For introducing quantum computing to the fish school algorithm,a new evolution algorithm,named as quantum artificial fish school algorithm,was proposed.The actions of fish school were re-described through quantum computing.The artificial fishes were encoded by quantum bits.The update of artificial fishes was implemented by quantum rotated gate.Mutation of fishes was performed by quantum negation gate,and finally the optimized solution of target functions was retrieved.The algorithm was simulated by extremum problem and TSP problem and was proved to be effective and efficient.
作者 陈晓峰 宋杰
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第12期1710-1713,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(200102059) 国家自然科学基金资助项目(61173028)
关键词 量子计算 人工鱼群算法 量子人工鱼群算法 函数极值 TSP问题 quantum computing artificial fish school algorithm quantum artificial fish school algorithm extremum problem TSP problem
  • 相关文献

参考文献8

  • 1Narayanan A, Moore M. Quantum-inspired genetic algorithm[C]// Proceedings of IEEE International Conference onEvolutionary Computation. Piscataway: IEEE Press, 1996.
  • 2Xu X L, Jiang J J , Jie J, et al . An improved real codedquantum genetic algorithm and its applications [ C]//Proceedings of the 2010 International Conference onComputational Aspects of Social Networks. Taiyuan, 2010 :307- 310.
  • 3Li W Z,Yin Q Y, Zhang X C. Continuous quantum antcolony optimization and its application to optimization andanalysis of induction motor structure [ C]// IEEE FifthInternational Conference on Bio-Inspired Computing: Theoriesand Applications. Changsha, 2010:313 — 317.
  • 4Shu W N. Quantum-inspired genetic algorithm based onsimulated annealing for combinatorial optimization problem[J]. International Journal of Distributed Sensor Networks ,2009,5(1):64-65.
  • 5Li H, Li S Y. A quantum immune evolutionary algorithm andits application [ J]. Journal of Computational InformationSystems , 2011,7(8):2972 - 2979.
  • 6Bo Y J, Zhang X, Shang A J, et al. Self-repair succession ofplant community by quantum-inspired fuzzy clustering analysis[J]. Journal of Convergence Information Technology, 2011,6(8):161-167.
  • 7Liu K, Peng L,Yang Q. The algorithm and application ofquantum wavelet neural networks[C]// 2010 Chinese Controland Decision Conference. Xuzhou, 2010:2941 - 2945.
  • 8Zhang Z S. Quantum-behaved particle swarm optimizationalgorithm for economic load dispatch of power system [ J].Expert Systems -with Applications , 2010,37 (2): 1800 —1803.

同被引文献71

  • 1杨淑媛,焦李成,刘芳.量子进化算法[J].工程数学学报,2006,23(2):235-246. 被引量:34
  • 2张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 3范玉军,王冬冬,孙明明.改进的人工鱼群算法[J].重庆师范大学学报(自然科学版),2007,24(3):23-26. 被引量:43
  • 4罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2010:164-165.
  • 5章毓晋.图像工程(中册)-图像分析[M].北京:清华大学出版社,2012,73-201.
  • 6Tiwari,Pawan Kumar, Vidyarthi Deo Prakash.A variant of quantum genetic algorithm and its possible applications[J].Advances in Intelligent and Soft Computing,2012,130( 1):797-811.
  • 7Li Panchi,Wang Haiying.Quantum ant colony optimization algorithm based on bloch spherical scarch[J].Neural Network World,2012,22 (4):325-341.
  • 8Chen Xiaofeng,Xia Xingyou,Yu Ruiyun.Improved quantum ant colony algorithm based on bloch coordinatcs[J].Journal of Computers:Finland, 2013,8(6):1 536-1 543.
  • 9Li Junying,Shen Yudi,Liu Haitao. Quantum particle swarm optimization based search space partition with application to continuous space optimization[J].Journal of Information and Computational Science,2012, 9(2):521-531.
  • 10Ajit Narayanan,Mark Moore:Quantum-Inspired Genetic Algorithms[C]// Proceedings of the 1996 IEE InternationalConference on Evolutionary Computation.Nagoya:IEEE Press, 1996:61-66.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部