期刊文献+

齿轮参数对三维裂纹应力强度因子影响的研究 被引量:9

The research on the influence of gear parameters on the stress intensity factors of three-dimensional crack
下载PDF
导出
摘要 建立了齿轮三维精确三齿模型,结合线弹性疲劳力学和边界元方法,运用专业断裂分析软件FRANC3D对齿轮齿根裂纹进行了数值分析,模拟求解了齿根椭圆形裂纹的裂尖三种类型的应力强度因子,并且探讨了三种应力强度因子随载荷、裂纹长度、模数、齿数、变位系数、裂纹角度等齿轮参数的变化规律。结果表明:I型、II型应力强度因子的数值在裂纹前缘呈近似于抛物线分布,而III型应力强度因子的数值在裂纹前缘呈近似于正弦曲线分布;应力强度因子随齿面载荷的变化呈线性规律;模数对裂纹两端的II型应力强度因子、裂纹中间的I型和III型应力强度因子影响较小,基本不变;齿数对应力强度因子影响较小,其在不同齿数下的最大差值仅为187 N.m-3/2;变位系数对其影响基本也呈线性变化;裂纹发生角度为60°时,I型应力强度因子比其它角度下的值都要大,因此应尽量避免产生此角度下的裂纹。本文研究为齿轮的断裂分析和寿命预测奠定了一定的基础。 The three dimensional three tooth model of gear is established.Based on linear elastic fatigue mechanics and boundary element method,by using the professional fracture analysis software FRANC3D,the tooth root crack of gear is studied by numerical analysis and the stress intensity factors(SIF) with three types on crack tip of an elliptical crack in tooth root are solved.Then the variation laws of factors with change of load,crack length,modulus,tooth number,modification coefficient and crack angle are discussed.Results obtained show that the distribution of SIF’s value of type I and type II in the crack front is similarly parabolic,while the distribution of SIF’s value of type III in the crack front is similarly sinusoidal.The variation law of SIF’s value with change of the tooth surface load is linear;the effect of tooth number on SIF is smaller;the variation law of SIF’s value with changing the modification coefficient also is similarly linear;When the crack initiation angle is 60°,the SIF’s value is larger than that of other angles,so the crack with 60° should be avoided as far as possible.These results lay a good foundation for fracture analysis and life prediction of gear.
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第6期723-729,777,共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(51275422) 西北工业大学研究生创业种子基金(Z2012028 Z2012058)
关键词 齿轮 几何参数 三维应力强度因子 变化规律 FRANC3D gear,geometric parameters,three dimensional stress intensity factor,variation law,FRANC3D.
  • 相关文献

参考文献11

  • 1Nicoletto G.Approximate stress intensity factors for cracked gear teeth[J].Engineering Fracture Mechanics,1993,44(2):231-242.
  • 2Furukawa C H,Bucalem M L, Mazella I J G.On the finite element modeling of fatigue crack growth in pressurized cylindrical shells[J]. International Journal of Fatigue,2009,31(4):629-635.
  • 3徐春晖,秦太验,野田尚昭.矩形界面裂纹应力强度因子评价公式[J].机械强度,2009,31(2):297-301. 被引量:1
  • 4Pehan S,Kramberger J,Flasˇker J,et al.Investigation of crack propagation scatter in a gear tooth’s root[J].Engineering Fracture Mechanics,2008,75(5):1266-1283.
  • 5Fajdiga G,Ren Z,Kramar J.Comparison of virtual crack extension and strain energy density methods applied to contact surface crack growth[J].Engineering Fracture Mechanics,2007,74 (17): 2721-2734.
  • 6孟波,郭万林.V型缺口裂端的三维应力状态及约束分析[J].计算力学学报,2006,23(3):280-284. 被引量:6
  • 7佘崇民,郭万林,孟波,张斌.椭圆孔三维应力集中及其对疲劳强度的影响[J].计算力学学报,2007,24(2):215-218. 被引量:4
  • 8Wu Siyan, Zuo M J,Parey A.Simulation of spur gear dynamics and estimation of fault growth[J].Journal of Sound and Vibration, 2008, 317 (3/5):608-624.
  • 9Li Chun, Guo Wanlin.Fusion analyses of lifecycle safety and damage tolerance for cracked structures[J].International Journal of Fatigue,2005,27(4):429-437.
  • 10贾学明,王启智.三维断裂分析软件FRANC3D[J].计算力学学报,2004,21(6):764-768. 被引量:28

二级参考文献47

  • 1郭万林.航空结构损伤容限设计中的三维问题[J].航空学报,1995,16(2):129-136. 被引量:17
  • 2England F. Stress distribution in bonded dissimilar materials containing circtdar or ring-shaped cavities [ J]. J. Appl. Mech., 1965, 32 (3) : 829-836.
  • 3Shibuya T, Koizumi T, Iwamoto T. Stress analysis of the vicinity of an elliptical crack at the interface of two bonded half-spaces[J]. JSME International Journal: Series A, 1989, 32(4) : 485-491.
  • 4Noda N A, Kagita M, Chen M C. Analysis of stress intensity factors of a ring-shaped interface crack[J]. International Journal of Solids and Structures, 2003, 40(24): 6577-6592.
  • 5Chen M C, Noda N A, Tang R J. Application of finite-part integrals to planar interfacial fracture problems in three dimensional bimaterials [ J]. J. Appl. Mech., 1999, 66(6): 885-890.
  • 6Murakami Y S, Nemat-Nasser S. Growth and stability of surface flaws of arbitrary shape[J]. Engng. Fract. Mech., 1983, 17(3): 193-210.
  • 7Murakami Y. Analysis of stress intensity factors of modes Ⅰ , Ⅱ and Ⅲ for inclined surface cracks of arbitrary shape[J]. Engng. Fract. Mech., 1985, 22(1): 101-114.
  • 8Irwin G R. Crack extension force for a part-through crack[J]. J. Appl. Mech. 1962, 29: 651-654.
  • 9Kassir M K, Sih G C. Three-dimensional stress distribution around an elliptical crack under arbitrary loadings[J]. J. Appl. Mech., 1966, 33: 601-611.
  • 10Wang Q, Noda N A, Honda M A, et al. Variation of stress intensity factor along the front of a 3D rectangular crack by using a singular integral equation method[J]. Int. J. Fract., 2001, 108(2): 119-131.

共引文献44

同被引文献46

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部