期刊文献+

具有HollingⅡ型功能性作用函数的随机恒化器模型的渐近性态 被引量:6

Asymptotic properties of a stochastic chemostat model with HollingⅡ functional response
下载PDF
导出
摘要 考虑了一类营养的转化率受到随机噪声干扰,具有HollingⅡ型功能性反应函数的随机恒化器模型.通过构造Liapunov函数,利用停时、伊藤公式证明了模型正解的全局存在唯一性.研究了模型解的长期渐近性态,主要揭示在不同条件下模型的解围绕其相应确定性模型的各类平衡点的振荡行为. In this paper, a stochastic chemostat model with Holling II functional response and the nutrition conversion rate being influenced by white noise is considered. By constructing stochastic Liapunov function and using stopping time and Ito's formula, it is shown that there is an unique positive solution to the system with positive initial value. The long time behavior of the system is studied. Mainly, how the solution goes around the equilibriums of the corresponding deterministic system under different conditions is disclosed.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2012年第4期379-389,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11271260 11001212) 上海市教委科研创新重点项目(13ZZ116)
关键词 随机恒化器模型 白噪声 随机渐近稳定 伊藤公式 stochastic chemostat model white noise stochastically asymptotical stability Ito's formula
  • 相关文献

参考文献17

  • 1Monod J. La technique de culture continue, theorie et applications[J]. Ann Inst Pasteur, 1950, 79: 390-410.
  • 2Novick A, Szilard L. Description of the chemostat[J]. Science, 1950, 112: 215-216.
  • 3Smith H, Waltman P. The Theory of the Chemostat[M]. Cambridge: Cambridge University Press, 1995.
  • 4阮士贵.恒化器模型的动力学[J].华中师范大学学报(自然科学版),1997,31(4):377-397. 被引量:22
  • 5Monod J. Recherches sur la Croissance des Cultures Bacteriennes[M]. Paris: Herman Press, 1942.
  • 6Jiang Daqing, Ji Chunyan, Shi Ningzhong. The long time behavior of DI SIR epidemic model with stochastic perturbation[J]. J Math Anal Appl, 2010, 372: 162-180.
  • 7Hu Guixin, Wang Ke. Stability in distribution of neutral stochastic functional differential equations with Markovian switching[J]. J Math Anal Appl, 2012, 385:757 - 769.
  • 8Mao X R, Marion G, Renshaw E. Asymptotic behaviour of the stochastic Lotka-Volterra[J]. J Math Anal Appl, 2003, 287: 141-156.
  • 9Yuan Chengjun, Jiang Daqing, O'Regan D, Agarwal R P. Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation[J]. Comm Nonl Sei Numer Simul, 2012, 17:2501 - 2516.
  • 10Yang Qingshan, Jiang Daqing, Shi Ningzhong. The ergodicity and extinction of stochasti- cally perturbed SIR and SEIR epidemic models with saturated incidence[J]. J Math Anal Appl, 2012, 388: 248- 271.

二级参考文献19

  • 1阮士贵,SIAM J Appl Math,1998年,58卷
  • 2He X Z,Research Report,1996年
  • 3阮士贵,J Math Anal Appl,1996年,204卷,786页
  • 4阮士贵,Can Appl Math Q,1995年,3卷,219页
  • 5Zhao T,J Math Biol Appl,1995年,193卷,329页
  • 6阮士贵,Nonlinear Anal,1995年,24卷,575页
  • 7阮士贵,Rocky Mount J Math,1995年,25卷,459页
  • 8Hsu S B,Can Appl Math Q,1994年,4卷,461页
  • 9阮士贵,Can Appl Math Q,1993年,1卷,529页
  • 10阮士贵,J Math Biol,1993年,31卷,633页

共引文献21

同被引文献32

  • 1付桂芳,马万彪.由微分方程所描述的微生物连续培养动力系统(I)[J].微生物学通报,2004,31(5):136-139. 被引量:16
  • 2付桂芳,马万彪.由微分方程所描述的微生物连续培养动力系统(II)[J].微生物学通报,2004,31(6):128-131. 被引量:16
  • 3孙树林,陈兰荪.具有变消耗率的比率确定型chemostat模型渐近行为(英文)[J].大连理工大学学报,2007,47(6):931-936. 被引量:3
  • 4Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria[J]. Nature, 1990, 343: 60-62.
  • 5Moebus K. Lytic and inhibition responses to bacteriophages among marine bacteria, with special reference to the origin of phage-host systems[J]. Helgoland Marine Research, 1983, 36: 375-391.
  • 6Levin B R. Frequency-dependent selection in bacterial populations[J]. Philosophical Trans- actions of the Royal Society of London, 1988, 319: 459-472.
  • 7Beretta E, Kuang Yang. Modeling and analysis of a marine bacteriophage infection[J]. Mathematical Biosciences, 1998, 149: 57-76.
  • 8Carletti M. Numerical determination of the instability region for a delay model of phage- bacteria interaction[J]. Numerical algorithms, 2001, 28: 27-44.
  • 9Beretta E, Kuang Yang. Modeling and analysis of a marine bacteriophage infection with latency period[J]. Nonlinear Analysis. Real World Applications, 2001, 2: 35-74.
  • 10Carletti M. On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment[J]. Mathematical Biosciences, 2002, 175: 117-131.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部