模函数的Hlder连续性与次可乘性
Hlder continuity and submultiplicative properties of the modular function
摘要
研究了模函数φK(a,r)的Hlder连续性及次可乘性,建立了φK(a,r)的几个精确不等式.
In this paper, the HSlder continuity and submultiplicative properties of the modular function φk(a,r) are obtained, and several sharp inequalities for φk(a, r) are established.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2012年第4期481-487,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11071069
11171307)
浙江省教育厅高校创新团队基金(T200924)
关键词
高斯超几何函数
广义模方程
模函数
Gaussian hypergeometric function
generalized modular equation
modular function
参考文献20
-
1Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. Washington: U.S. Government Printing Office, 1965.
-
2Rainville E D. Special Functions[M]. New York: Macmillan, 1960.
-
3Anderson G D, Qiu Songliang, Vamanamurthy M K, et al. Generalized elliptic integrals and modular equations[J]. Pacific J Math, 2000, 192: 1-37.
-
4Qiu Songliang, Vuorinen M. Special functions in geometric function theory, In: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, 621-659[M]. Amsterdam: Elsevier Sci B V, 2005.
-
5Alzer H, Qiu Songliang. Monotonicity theorems and inequalities for the complete elliptic integrals[J]. J Comput Appl Math, 2004, 172: 289-312.
-
6Andras S, Baricz A. Bounds for complete elliptic integrals of the first kind[J]. Expo Math, 2010, 28: 357-364.
-
7Guo Baini, Qi Feng. Some bounds for the complete elliptic integrals of the first and second kinds[J]. Math Inequal Appl, 2011, 14:323-334.
-
8Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley &Sons, 1997.
-
9Berndt B C, Bhargava S, Garvan F G. Ramanujan's theories of elliptic functions to alterna- tive bases[J]. Trans Amer Math Soc, 1995, 347: 4163-4244.
-
10Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane[M]. New York: Springer- Verlag, 1973.
二级参考文献17
-
1Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. New York: Springer-Verlag, 1973.
-
2Bowman F. Introduction to Elliptic Functions with Applications. New York: Dover, 1961.
-
3Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Scientists. 2nd ed. Die Grundlehren Math Wiss 67. New York: Springer-Verlag, 1971.
-
4Anderson G D, Vamanamurthy M K, Vuorinen M. Distortion functions for plane quasiconformal mappings. Israel J Math, 1988, 62:1-16.
-
5Anderson G D, Vamanamurthy M K, Vuorinen M. Inequalities for plane quasiconformal mappings. Contemp Math, 1994, 169:1-27.
-
6Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997.
-
7Hubner O. Remarks on a paper by Lawrynowicz on quasiconformal mappings. Bull Acad Polon Sci Ser Sci Math Astronom Phys, 1970, 18:183-186.
-
8Kuhnau R. The conformal module of quadrilaterals and of rings. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 2. Amsterdam: Elsevier, 2005, 99-129.
-
9Partyka D, Sakan K. On an asymptotically sharp variant of Heinz's inequality. Ann Acad Sci Fenn Math, 2005, 30: 167-182.
-
10Qiu S L, Vamanamurthy M K, Vuorinen M. Some inequalities for the Hersch-Pfluger distortion function. J Inequal Appl, 1999, 4:115-139.
-
1刘大瑾,白路锋.关于完全三部图的Ramsey数[J].南京理工大学学报,2010,34(3):406-408. 被引量:2
-
2王为民.运用Klein-Gordon方程研究Eckart势井中标量粒子的束缚态[J].沈阳工程学院学报(自然科学版),2010,6(1):91-93.
-
3刘大瑾.一个图集对完全图的拉姆齐数[J].中北大学学报(自然科学版),2015,36(2):131-133. 被引量:1
-
4刘红梅,牟海宁.关于Apostol-Genocchi多项式的一些恒等式(英文)[J].西南师范大学学报(自然科学版),2009,34(5):49-52. 被引量:1
-
5赵叶华.广义椭圆积分的若干性质[J].杭州电子科技大学学报(自然科学版),2006,26(6):88-90. 被引量:1