期刊文献+

模函数的Hlder连续性与次可乘性

Hlder continuity and submultiplicative properties of the modular function
下载PDF
导出
摘要 研究了模函数φK(a,r)的Hlder连续性及次可乘性,建立了φK(a,r)的几个精确不等式. In this paper, the HSlder continuity and submultiplicative properties of the modular function φk(a,r) are obtained, and several sharp inequalities for φk(a, r) are established.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2012年第4期481-487,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11071069 11171307) 浙江省教育厅高校创新团队基金(T200924)
关键词 高斯超几何函数 广义模方程 模函数 Gaussian hypergeometric function generalized modular equation modular function
  • 相关文献

参考文献20

  • 1Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. Washington: U.S. Government Printing Office, 1965.
  • 2Rainville E D. Special Functions[M]. New York: Macmillan, 1960.
  • 3Anderson G D, Qiu Songliang, Vamanamurthy M K, et al. Generalized elliptic integrals and modular equations[J]. Pacific J Math, 2000, 192: 1-37.
  • 4Qiu Songliang, Vuorinen M. Special functions in geometric function theory, In: Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, 621-659[M]. Amsterdam: Elsevier Sci B V, 2005.
  • 5Alzer H, Qiu Songliang. Monotonicity theorems and inequalities for the complete elliptic integrals[J]. J Comput Appl Math, 2004, 172: 289-312.
  • 6Andras S, Baricz A. Bounds for complete elliptic integrals of the first kind[J]. Expo Math, 2010, 28: 357-364.
  • 7Guo Baini, Qi Feng. Some bounds for the complete elliptic integrals of the first and second kinds[J]. Math Inequal Appl, 2011, 14:323-334.
  • 8Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley &Sons, 1997.
  • 9Berndt B C, Bhargava S, Garvan F G. Ramanujan's theories of elliptic functions to alterna- tive bases[J]. Trans Amer Math Soc, 1995, 347: 4163-4244.
  • 10Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane[M]. New York: Springer- Verlag, 1973.

二级参考文献17

  • 1Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. New York: Springer-Verlag, 1973.
  • 2Bowman F. Introduction to Elliptic Functions with Applications. New York: Dover, 1961.
  • 3Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Scientists. 2nd ed. Die Grundlehren Math Wiss 67. New York: Springer-Verlag, 1971.
  • 4Anderson G D, Vamanamurthy M K, Vuorinen M. Distortion functions for plane quasiconformal mappings. Israel J Math, 1988, 62:1-16.
  • 5Anderson G D, Vamanamurthy M K, Vuorinen M. Inequalities for plane quasiconformal mappings. Contemp Math, 1994, 169:1-27.
  • 6Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997.
  • 7Hubner O. Remarks on a paper by Lawrynowicz on quasiconformal mappings. Bull Acad Polon Sci Ser Sci Math Astronom Phys, 1970, 18:183-186.
  • 8Kuhnau R. The conformal module of quadrilaterals and of rings. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 2. Amsterdam: Elsevier, 2005, 99-129.
  • 9Partyka D, Sakan K. On an asymptotically sharp variant of Heinz's inequality. Ann Acad Sci Fenn Math, 2005, 30: 167-182.
  • 10Qiu S L, Vamanamurthy M K, Vuorinen M. Some inequalities for the Hersch-Pfluger distortion function. J Inequal Appl, 1999, 4:115-139.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部