期刊文献+

基于蚁群算法的二进神经网络学习算法 被引量:3

An ant colony-based learning algorithm for binary neural networks
下载PDF
导出
摘要 本文提出一种实现任意布尔函数的二进神经网络学习算法,该算法首先借助蚁群算法优化选择核心节点及节点访问顺序;其次,根据优化的节点访问顺序给出扩张分类超平面的步骤,减少了隐层神经元的数目,同时给出隐层神经元及输出元的表达形式;并进一步通过理论分析了该算法的收敛性。该算法成功地改进了已有学习算法的不足,并通过典型实例验证了该算法的有效性。 This paper presents a learning algorithm to realize any Boolean function for binary neural networks. In this paper, by means of the ant colony algorithm, we obtain the optimized core nodes and the extension order of true nodes, so this algorithm can reduce the number of hidden neurons in network, and the expression of the hidden neurons and the output neuron are also given. Furthermore, we analyze the convergence of this algorithm. This algorithm improves the deficiency of existing algorithms successfully, and these advantages are verified by basic numerical experiments.
出处 《电路与系统学报》 CSCD 北大核心 2012年第6期49-55,48,共8页 Journal of Circuits and Systems
基金 国家自然科学基金项目(61070220) 国家"863"计划项目(2011AA060406) 高等学校博士学科点专项科研基金(20090111110002)
关键词 二进神经网络 蚁群算法 布尔函数 学习算法 收敛性分析 binary neural networks ant colony algorithm boolean function learning algorithm convergence analysis
  • 相关文献

参考文献21

  • 1Chen Fangyue, Chen Guanrong, He Guolong. Universal Perceptron and DNA-Like Learning Algorithm for Binary Neural Networks: LSBF and PBF Implementations [J]. IEEE Transactions on Neural Network, 2009, 20(10): 1645-1658.
  • 2Chen Fangyue, Chen Guanrong, He Qinbin. Universal Perceptron and DNA-Like Learning Algorithm for Binary Neural Networks: Non-LSBF Implementation [J]. IEEE Transactions on Neural Network, 2009, 20(8): 1293-1301.
  • 3Changbing Tang, Fangyue Chert, Xiang Li. Perceptron implementation of Triple-Valued logic operations [J]. IEEE Transaction on Circuits and Systems-ll: Express Brieh 2011, 58(9): 590-594.
  • 4Lu Yang, Yang Juan, Wang Qiang, Huang Zhenjin. The upper bound of the minimal number of hidden nodes in parity problem by neural networks [J]. Science in China Ser.F Information Sciences, to be published.
  • 5吕伟锋,林弥,孙玲玲.基于复数权神经元的布尔函数稳健学习算法[J].电子学报,2011,39(11):2708-2712. 被引量:1
  • 6Naredra S. Chaudhari, Aruna Tiwari. Binary Neural Network classifier and it's bound for the number of hidden layer neurons [A] International conference on Control Automation Robotics and Vision [C]. Singapore, 2010-12.
  • 7D L Gray, A N Michel. A training algorithm for binary feedforward neural networks [J]. IEEE Trans. Neural Networks, 1993, 3(2): 176-194.
  • 8Kim J H, Park S K. The geometrical learning of binary neural networks [J]. IEEE Trans Neural Networks, 1995, 6(1): 237-247.
  • 9A Yamamoto, T Saito. An improved expand-and-truncate learning [A]. IEEE International Conference on Neural Networks Proceedings [C]. Houston, TX, USA, 1997-06: 1 11 - 1 116.
  • 10马晓敏,杨义先,章照止.二进神经网络学习算法研究[J].计算机学报,1999,22(9):931-935. 被引量:5

二级参考文献17

  • 1章照止,神经网络理论与应用研究,1996年
  • 2Jung H Kim,IEEE Trans Neural Networks,1995年,6卷,1期,237页
  • 3章照止,中国神经网络首届学术大会论文集,1990年,405页
  • 4万哲先,非线性移位寄存器,1978年
  • 5Ma Xiaomin,IEICE Trans Fundamentals Electronics Communications Computer Science
  • 6陈国良,遗传算法及其应用,1996年
  • 7Jung H Kim,IEEE Trans Neural Networks,1995年,6卷,1期,237页
  • 8Park Sung Kwon,IEEE Trans Comput,1993年,42卷,8期,988,92页
  • 9Liu R,IEEE Int Sympo CASCAS,1990年,704页
  • 10张军英,保铮.二进神经网络的最稳健设计[J].电子学报,1997,25(10):37-43. 被引量:10

共引文献7

同被引文献16

  • 1Chen Fang-yue,Chen Guan-rong,He Guo-long. Universal Perceptron and DNA-Like Learning Algorithm for Binary Neural Networks:LSBF and PBF Implementations[J].IEEE Transactions on Neural Networks,2009,(10):1645-1658.
  • 2Chen Fang-yue,Chen Guan-rong,He Qin-bin. Universal Perceptron and DNA-Like Learning Algorithm for Binary Neural Networks:Non-LSBF Implementation[J].IEEE Transactions on Neural Networks,2009,(08):1293-1301.
  • 3Lu Yang,Yang Juan,Wang Qiang. The upper bound of the minimal number of hidden nodes in parity problem by neural networks[J].Science in China(Information Sciences),2007,(07).
  • 4Chaudhari N S;Tiwari A.Binary Neural Network classifier and it's bound for the number of hidden layer neurons[A]新加坡,2010.
  • 5Shimada M,Satio T. A GA-based learning algorithm for binary neural networks[J].IEICE Transactions on Fundamentals,2002,(11):2544-2546.
  • 6Hirane T,Toryu T,Nakano H. Analysis for Characteristics of GA-Based Learning Method of Binary Neural Networks[A].2005.323-329.
  • 7Kim J H,Park S K. The geometrical learning of binary neural networks[J].IEEE Transactions on Neural Networks,1995,(01):237-247.
  • 8Fung H K,Li L K. Minimal feedforward parity networks using threshold gates[J].Neural Computation,2001,(02):319-326.
  • 9高尚;杨静宇.群智能算法及其应用[M]北京:中国水利水电出版社,2006.
  • 10杨娟,陆阳,黄镇谨,王强.二进神经网络中的汉明球突及其线性可分性[J].自动化学报,2011,37(6):737-745. 被引量:5

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部