期刊文献+

基于多观察层次动态贝叶斯网络的视频行为分析 被引量:1

A multi-observation hierarchical dynamic Bayesian network for video behavior analysis
下载PDF
导出
摘要 为了分析视频监控中行人和车辆的行为,本文提出了一种多观察层次动态贝叶斯网络模型。首先,行人和车辆的行为用静态、动态及相互关系特征来表示。然后将其作为模型的输入,通过网络提取和分析目标的行为及其相互关系。同时,本文设计了一个简单的模型选择准则,从候选模型池中选择适合当前场景的模型来减小计算复杂度。实验结果表明本文提出的方法能有效的分析视频监控场景中行人和车辆的行为。 A multi-observation hierarchical dynamic Bayesian network is present to analyze the behaviors of human and vehicle for video surveillance. First, the behaviors of human and vehicle are represented by static, active and related features. Then the model is built to detect and analyze behaviors and their relationships, which inputs are behavior representations. At the same time, in order to decrease the complexity, a simple model selection is designed. Experiments show that the proposed framework could efficiently analyze behaviors for video surveillance.
出处 《电路与系统学报》 CSCD 北大核心 2012年第6期124-131,共8页 Journal of Circuits and Systems
基金 陕西省自然基金项目(2010JM8014) 中国博士后科学基金(20100471838)
关键词 视频监控 动态贝叶斯网络 行为分析 模型选择 video surveillance dynamic Bayesian networks behavior analysis model selection
  • 相关文献

参考文献28

  • 1K D Gaitanis. Team Behavior Recognition using Dynamic Bayesian Networks [D]. Thesis. 2008.
  • 2T Xiang, S Gong. Video Behavior Profiling for Anomaly Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 893-908.
  • 3W.Hu, et al. A survey on visual surveillance of object motion and behaviors [J]. IEEE Transactions on Systems, Man, and Cybernetics - PART C: Applications and Reviews, 2004, 34(3): 334-351.
  • 4K P Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning [D]. Doctor of Philosophy. Thesis. 2002.
  • 5X Xue, T C Henderson. Video-based Animal Behavior Analysis From Multiple Cameras [A]. in Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems [C]. 2006. 335-340.
  • 6W A Wang, C L Tung, Dynamic Hand Gesture Recognition using Hierarchical Dynamic Bayesian Networks Through Low-level Image Processing [A]. in Proceedings of the Seventh International Conference on Machine Learning and Cybernetics [C]. 2008, 3247-3253.
  • 7M AI-Hames, G.Rigoll. A multi-modal mixed-statedynamic bayesian network for robust meeting event recognition from disturbed data [Z]. 2008.
  • 8R Gwadera, J Toivola, J Hollmen. Segmenting Multi-attribute Sequences using Dynamic Bayesian Networks [A]. in Seventh IEEE International Conference on Data Mining - Workshops [C]. 2007. 465-470.
  • 9J Muncaster, Y Ma. Activity .Recognition using Dynamic Bayesian Networks with Automatic State Selection [A]. in 1EEE Workshop onMotion and Video Computing [C], 2007.30-37.
  • 10T Xiang, S Gong. Beyond Tracking: Modelling Activity and Understanding Behaviour [J]. International Journal of Computer Vision, 2006.

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部