期刊文献+

非绝热消除条件下输出边频量子关联 被引量:3

Output Sideband Quantum Correlations with Nonadiabatic Elimination
原文传递
导出
摘要 考虑了双模腔内含有N个三能级V型原子的系综与两个量子化场之间的相互作用。在非绝热消除原子变量的条件下,分析了两个初始为相干态的输入场从腔内输出后的量子关联性质。结果表明在恰当的条件下,在中心频率处可以获得量子纠缠,但随合作参数的增加,中心频率处的纠缠变小甚至消失。与此同时,在高频区间则产生了一对边频量子纠缠。这是由于合作参数增加引起的真空拉比分裂导致了高频处获得量子关联。此外,通过调节量子化场的强度以及原子和场的反对称失谐,还可获得两对边频量子纠缠。这对边频量子关联的研究具有十分重要的价值。 The interaction of two quantized fields with an atomic ensemble including N three-level V-type atoms inside a two-mode cavity is investigated. With nonadiabatic elimination, the quantum correlation properties of two output cavity fields are analyzed when the two initial input fields are in coherent states. The results show that the quantum entanglement can be generated at the zero frequency under appropriate conditions. As the cooperation parameter increases, the zero-frequency entanglement decreases, and even vanishes. However, a pair of sideband entanglement happen in the high-frequency regime, which are induced by vacuum Rabi splitting. In addition, by modifying the intensity of the quantized fields and the antisymmetric detunings, two pairs of sideband entanglement can also be obtained. These results will benefit the research of the sideband quantum correlations.
作者 王飞 肖明
机构地区 三峡大学理学院
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第12期248-253,共6页 Acta Optica Sinica
基金 国家自然科学基金(11104163) 三峡大学科学基金(KJ2011B019)资助课题
关键词 量子光学 边频量子关联 非绝热消除 真空拉比分裂应用 quantum optics sideband quantum correlation nonadiabatic elimination vacuum Rabi splitting
  • 相关文献

参考文献33

  • 1S. L. Braunstein, P. V. Loock. Quantum information with continuous variables [J]. Rev. Mod. Phys. , 2005, 77 (2) 513-577.
  • 2Jietai Jing, Jing Zhang, Ying Yan et al.. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables[J]. Phys. Rev. Lett. , 2003, 90(16) : 167903.
  • 3Shibiao Zheng, Guangcan Guo. Teleportation of an unknown atomic state through the Raman atom-cavity-field interaction[J].Phys. Lett. A, 1997, 232(3-4): 171-174.
  • 4P. V. Loock, S. L. Branustein. Telecloning of continuous quantum variables[J]. Phys. Rev. I.ett. , 2001, 87(24) : 247901.
  • 5J. Fiurasek, N. J. Cerf. How to measure squeezing and entanglement of Gaussian states without homodyning[J]. Phys. Rev. gett. , 2004, 93(6): 063601.
  • 6Gaoxiang Li, Yaping Yang, K. Allaart et al.. Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum[J]. Phys. Rev. A, 2004, 69(1): 014301.
  • 7V. Josse, A. Dantan, A. Bramati et al.. Continuous variable entanglement using cold atoms[J]. Phys. Rev. Lett. , 2004, 92(12) : 123601.
  • 8赵亚平,郝树宏,苏晓龙,谢常德.连续变量六组份和八组份星型Cluster纠缠态光场产生系统[J].光学学报,2012,32(6):224-231. 被引量:8
  • 9彭堃墀,贾晓军,苏晓龙,谢常德.连续变量量子态的光学操控[J].光学学报,2011,31(9):73-81. 被引量:19
  • 10杨磊,马晓欣,崔亮,郭学石,李小英.利用高非线性光纤产生量子关联光子对的实验研究[J].光学学报,2011,31(10):230-234. 被引量:4

二级参考文献22

  • 1杨涛,潘建伟.量子信息技术的新进展——五光子纠缠和开放目的的量子隐形传态[J].中国科学院院刊,2004,19(5):355-358. 被引量:73
  • 2郑耀辉,卢华东,李凤琴,张宽收,彭堃墀.全固态高输出功率单频Nd:YVO_4/KTP激光器[J].中国激光,2007,34(6):739-742. 被引量:16
  • 3C. J. Villas-B?as,M. H.Y. Moussa.One-step generation of high-quality squeezed and EPR states in?cavity QED[J].The European Physical Journal D.2005(1)
  • 4ZHENG S B,YANG Z B,XIA Y.Generation of two-modesqueezed states for two separated atomic ensembles via coupledcavities[].Physical Review.2010
  • 5PARKINS A S,SOLANO E,CIRAC J I.Unconditional two-mode squeezing of separated atomic ensembles[].PhysicalReview Letters.2006
  • 6GUZMAN R,RETAMAL J C,SOLANO E,et al.Fieldsqueeze operators in optical cavities with atomic ensembles[].Physical Review.2006
  • 7ZOU X B,DONG Y L,GUO G C.Schemes for realizingfrequency up-and down-conversions in two-mode cavity QED[].Physical Review.2006
  • 8TAN H T,XIA H X,LI G X.Interference-inducedenhancement of field entanglement from an intracavity three-level V-type atom[].Physical Review.2009
  • 9MU Q X,MA Y H,ZHOU L.Output squeezing andentanglement generation from a single atom with respect to alow-Q cavity[].Physical Review.2010
  • 10SERRA R M,VILLAS-BOAS C J,ALMEIDA N G D,et al.Frequency up-and down-conversions in two-mode cavityquantum electrodynamics[].Physical Review.2005

共引文献23

同被引文献48

  • 1宋同强,冯健,王文正,许敬之.双原子与单模腔场Raman相互作用过程中原子与场的动力学特性[J].物理学报,1995,44(7):1056-1063. 被引量:9
  • 2Bennet C H, Brassard G. Quantum cryptography: public key distribution and coin tossing [C]. IEEE International Conference Computers, Ystems, and Signal Processing Bangalore, India. 1984. 175-179.
  • 3Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Phys Rev Lett, 2000, 85 (12): 441-444.
  • 4Mayers D. Unconditionally secure quantum bit commitment is impossible [J]. Phys Rev Lett, 1997, 78(17): 3414-3417.
  • 5Gottesman D, Lo H K, Lutkenhaus N, et al.. Security of quantum key distribution with imperfect devices [J].Quantum Information Computation, 2004, 4(5): 325-360.
  • 6Brassard G, Lutkenhaus N, Mor T, et al.. Limitations on practical quantum cryptography [J]. Phys Rev Lett, 2000, 85(6) 1330-1333.
  • 7Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell's theorem [J]. Phys Rev Lett, 1992, 68(5) 557-559.
  • 8Lo H K, Curty M, Qi B. Measurement device independent quantum key distribution [J]. Phys Rev Lett, 2012, 108(13) 130503.
  • 9Lo H K, MAX F, Chen K. Decoy state quantum key distribution [J]. Phys Rev Lett, 2005, 94(23): 230504.
  • 10Ma X F, Fung C H F, Razavi M. Statistical fluctuation analysis for measurement device independent quantum key distribution [J]. Phys Rev A, 2012, 86(5): 052305.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部