期刊文献+

基于ANSYS/LS-DYNA非线性模块在运动鞋减震和止滑性能方面的有限元数值模拟分析 被引量:5

Finite Element Analysis on the Reducing Shake and Stopping Sliding Quality of Sport Shoes
原文传递
导出
摘要 为了获得在试验标准要求的载荷条件下运动鞋前掌、后跟的最大冲击力和最大变形量,及在假定载荷条件下运动鞋接触压力分布和鞋底的剪切应力分布,为其减震和止滑性能评价提供参考,达到优化运动鞋结构设计和减少人体运动损伤的目的。采用文献资料法、实验法和数理统计法,使用大型通用有限元软件ANSYS/LS-DYNA非线性模块对试样42码运动鞋的减震和止滑性能进行有限元数值模拟分析,结果发现:在试验标准要求的载荷条件下,运动鞋减震性能方面得到的最大冲击力和变形量前掌为790 N、6.36 mm,后跟为850 N、6.18 mm;在载荷重量80 kg状态下,运动鞋止滑性能方面的接触压力分布和鞋底的剪切应力分布,从1m高处垂直、前冲、前倾3°下落时鞋底与地面接触过程中鞋底垂直于脚面方向最大接触应力分别为3.7 MPa、3.46 MPa(水平方向最大剪切应力1.06 MPa)、7.07 MPa,最大应力位置分别位于脚跟外边缘区域、脚跟外边缘位置、前脚掌外边缘区域—脚跟中心区域—脚跟沿前进方向的边缘区域。 The paper explored the max. impact force and distortion of the half sole and heei and pressure distribu tion and shear stress distribution of the sport shoes in the loading condition to provide the basic reference of reduc ing shock and antislip of the sport shoes and to optimize the structure design and reduce the human body sports injury. With the method of documentation, experiment and statistics, this study simulated shock absorption and antislip performance of sports shoes sized 42 by using the finite element software ANSYS / LSDYNA nonlinear module. The results showed that: in the test standard loading conditions, the maximum impact force and deforma tion obtained by sports shoes shock absorption performance were 790 N, 6.36 mm, followed by 850 N, 6.18 ram. Under the 80 kg load condition, the maximum contact stress where soles and the ground contact during the sole perpendicular to the direction were 3.7 MPa, 3.46 MPa (the maximum horizontal shear stress 1.06 MPa) , 7.07 MPa from the height of 1 m vertical, forward, forward 3 °. The maximum stress position were respectively located in the heel, the heel outer edge region, the front sole regional heel center area, along the direction of the heel edge area.
出处 《北京体育大学学报》 CSSCI 北大核心 2012年第11期71-75,共5页 Journal of Beijing Sport University
基金 国家体育总局体育科学研究所"有限元技术在运动鞋技术方面的研究与应用"(1001)
关键词 运动鞋接触压力 有限元软件 减震性能 止滑性能 数值模拟 运动人体工学 人体运动力学 sport shoes contact pressure finite element analysis reduce shake function stop sliding numericalsimulation movement ergonomic kinetic
  • 相关文献

参考文献12

  • 1Tian-Xia Qiu, Ee-Chon Teo. Finite element modeling of a 3D coupled foot - boot model[ J]. Medical Engineering & Physics ,2011.
  • 2Jia Yu a, Jason Tak-Man Cheung. Development of a finite element model of female foot for high-heeled shoe design [ J ]. Clinical Biomechanics ,2008 : 31 - 38.
  • 3Yu-Chun Hsu, Yih-Wen Gung. Using an Optimization Ap- proach to Design an Insole for Lowering Plantar Fascia Stress--A Finite Element Study [ J ]. Annals of Biomedical Engineering, 2008.
  • 4Chen NZ,Lee WCC,Zhang M. A Robust Design procedure for improvement of quality of lower-limb prosthesis [ J ]. Bi- omed Materials Eng , 2006,16(5) , 309-318.
  • 5Cheung JTM, Luximon A, Zhang M. Parametrical design of pressure-relieving foot orthoses using statistical-based fi- nite element method[J]. Med Eng Phys,2008,30(2) :269 - 277.
  • 6Cheung JTM, Zhang M. A 3 - dimensional finite element model of the human foot and ankle for insole design [ J ]. Arch Phys Med Rehab, 2005 a. ,86(2) :353 -358.
  • 7Cheung JTM, Zhang M, Leung AKL,et al. Three-dimen- sional finite element analysis of the foot during standing a material sensitivity study [ J ]. J Biomech, 2005b. ,38 (5): 1045 -1054.
  • 8WCC, Zhang M, Chan P, et al. Gait analysis of flexible- shank low-cost trans-tibial prosthesis [ J ]. IEEE Trans Neural Systems and RehabEng ,2006,14 ( 3 ) : 370 - 377.
  • 9Lee WCC, Zhang M. Design of monolimb using finite element modeling and statistics-based taguchi method [ J ]. Clin Biomech, 2005,20 (7) : 759 - 766.
  • 10Lee WCC, Zhang M, Boone DA, et al. Finite element analysis to determine the effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket [ J ]. J Rehab Res Dev, 2004, 41 (6A) : 775 -786.

同被引文献34

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部