期刊文献+

一种复杂背景图像三维重建算法及其医学应用

A three-dimensional reconstruction algorithm for complex background image and its medical applications
下载PDF
导出
摘要 针对复杂背景下绝大多数三维重建算法的可靠性不高和鲁棒性不强的问题,提出一种适合复杂背景图像的三维重建算法.研究空间点三维重建计算的一般性框架,并分析具体的实现过程;为了提高复杂背景下三维重建的可靠性和鲁棒性,对初始视差图中的无纹理或低纹理区域、遮挡区域和深度不连续区域分别运用置信滤波器、左右一致性滤波器和唯一性滤波器进行预处理,剔除伪匹配点;将滤波后的致密视差图进行空间点的三维重建,得到复杂背景图像点的深度信息.实验结果表明,该算法计算效率高,具有很强的稳健性,即使图像背景条件发生动态变化也能够获得满意的三维重建精度,能够为计算机辅助外科诊断系统提供可靠的深度信息. Aiming at the problem that the vast majority of three-dimensional reconstruction algorithms under complex background have low reliability and weak robustness,a three-dimensional reconstruction algorithm suitable for complex background is proposed.General framework in three-dimensional reconstruction calculation of spatial points was investigated,and specific implementation procedures were analyzed.To improve the reliability and robustness of three-dimensional reconstruction under complex background,the confidence filter,left-right filter and uniqueness filter were adopted to eliminate the false matching points for the textureless regions or low texture regions,occluded regions and depth discontinuity regions in initial disparity map,respectively.Spatial points' three-dimensional reconstruction of the filtered dense disparity map was implemented,the depth information of the image points under complex background was obtained.The experiment results show that the proposed method is efficient and has strong robustness,satisfactory three-dimensional reconstruction accuracy also can be obtained even if the image background conditions change dynamically and it can provide reliable depth information for computer assisted surgery diagnostic system.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第11期2061-2067,共7页 Journal of Zhejiang University:Engineering Science
基金 浙江省自然科学基金资助项目(LQ12F01004)
关键词 复杂背景图像 三维重建 初始视差图 深度信息 complex background image three-dimensional reconstruction initial disparity map depth information
  • 相关文献

参考文献13

  • 1CHUCK T, MARTIAL H, TAKEO K, et al. Toward au- tonomous driving: The CMU navlab, part II.. system and architecture [J].IEEE Expert, 1991, 6(4): 44- 52.
  • 2SHOEMAKER C M, BOMSTEIN J A. The Demo III UGV program: a testbed for autonomous navigation re- search [C] //Proceedings of IEEE International Symposi- um on Computational Intelligence in Robotics and Auto- mation. Gaithersburg, MD, USA: IEEE, 1998: 644- 651.
  • 3郑军,诸静.基于自适应遗传算法的图像匹配[J].浙江大学学报(工学版),2003,37(6):689-692. 被引量:43
  • 4PARK J S. Interactive 3D reconstruction from multiple images: a primitive-based approach [J]. Pattern Recog- nition Letters, 2005, 26(16) : 2558 - 2571.
  • 5王炜强,徐进,杜歆,刘济林.基于宽基线立体视觉的远距离三维重建[J].浙江大学学报(工学版),2010,44(6):1073-1078. 被引量:9
  • 6刘钢,彭群生,鲍虎军.基于图像建模技术研究综述与展望[J].计算机辅助设计与图形学学报,2005,17(1):18-27. 被引量:57
  • 7蓝章礼,曹建秋,梁爽.复杂背景下视频序列中的人脸定位算法[J].计算机科学,2008,35(6):255-257. 被引量:3
  • 8MAO G Z, WU Y L, HOR M K, et al. Real-time hand detection and tracking against complex background [C]// International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Washington, DC, USA, IEEE Computer Society, 2009.. 905-908.
  • 9VIOLA P, JONES M. Robust real-time object detection [J]. International Journal of Computer Vision, 2002, 57 (2) : 137 - 154.
  • 10GE X W, CUI Y P. Edge detection and target recogni- tion from complex background [C]// International Conference on Advanced Computer Control. Shenyang: IEEE, 2010:441-444.

二级参考文献114

  • 1王萍,张文明.图像处理在焊缝跟踪中的应用研究[J].现代焊接,2007(10):16-18. 被引量:3
  • 2沈晔湖,刘济林.利用立体图对的三维人脸模型重建算法[J].计算机辅助设计与图形学学报,2006,18(12):1904-1910. 被引量:7
  • 3PRITCHETT P, ZISSERMAN A. Wide baseline stereo matching [C]// Proceedings of the 6^th International Conference on Computer Vision. Bombay, India: IEEE Computer Society, 1998:754 - 759.
  • 4TUYTELAARS T, VAN GOOL L. Wide baseline stereo matching based on local, affinely invariant regions [C]// Proceedings of the 11^th British Machine Vision Conference. Bristol, UK: ILES Central, 2000:412-425.
  • 5TELL D, CADSSON S. Wide baseline point matching using invariants computed from intensity profiles [C]// Proceedings of the 6^th European Conference on Computer Vision. Dublin, Ireland: Springer, 2000.
  • 6LOWED G. Distinctive image features from scale-invariant key points [J]. International Journal of Computer Vision, 2004: 60(2):91- 110.
  • 7IRSARA L, FUSIELLO A. Quasi-euclidean uncalibrated epipolar rectification [C]// International Conference on Pattern Recognition (ICPR). Tampa, USA: [s. n. ], 2008 : 1 - 4.
  • 8HEYDEN A, POLLEFEYS M. Multiple view geometry [M]. NJ, USA: Prentice Hall, 2005.
  • 9NovAtel产品类型大全[EB/OL].[2008-08-23].http://www.novatel.com.cn/products/NovAtel%20product.pdf.
  • 10Ooogle Earth 4. 3 [CP/OL]. [2008-08-20]. http: // earth, google, com/download-earth, html.

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部