摘要
针对以往算法在搜索适合Reed-Muller(RM)逻辑实现的逻辑子覆盖中存在的不足,提出基于不相交乘积项的搜索方法.该方法通过将逻辑函数转化为不相交乘积项的集合,并搜索符合约束条件的不相交乘积项的多数覆盖以及根据乘积项之间的位操作结果,将逻辑函数拆分成二部分,使之分别适合RM逻辑实现和传统布尔逻辑实现.提出的算法用C编程实现,并用MCNC电路测试.实验结果表明,相比于以往的方法,提出的算法能够有效扩大搜索范围,并且具有运行速度快且对逻辑函数的输入变量数量不敏感等特点.
With the deficiency of the published algorithms in searching and extracting the sub-cover suitable for Reed-Muller(RM) logic implementation in the cover of a logic function,an algorithm based on the disjointed cubes was proposed.By searching the majority cubes of the disjointed cubes and checking the results of the bit-wise operation of the cubes,the whole cover of the function was divided into two sub-covers,one for RM logic implementation and the other for the traditional Boolean logic implementation.The proposed algorithm was implemented using C and tested with MCNC benchmarks.Compared to the reported methods,the searching capacity of the proposed algorithm is extended and its computing efficiency is improved.Further,the number of variables of the function has little effect on the speed of the proposed algorithm.
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2012年第11期2089-2096,共8页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金重点资助项目(61131001)
国家自然科学基金资助项目(61228015)
国家教育部博士点基金资助(20113305110001)
浙江省自然科学基金资助项目(LY12F01014)