期刊文献+

基于间隙度量的鲁棒LPV控制律设计 被引量:3

Robust LPV control design using the gap metric
下载PDF
导出
摘要 针对高超声速飞行器飞行包线范围广和模型参数不确定性大的问题,提出了基于间隙度量的鲁棒线性变参数(LPV,Linear Parameter-Varying)控制律设计方法.该方法将间隙度量引入LPV控制器设计中,提出了基于最优间隙度量的凸分解策略,并将其应用于多胞顶点的分解和鲁棒LPV控制器的自增益调参,以降低控制器的保守性;考虑模型的参数不确定性求取多胞LPV系统的顶点模型并设计顶点控制器,以提高顶点边界附近LPV控制器的鲁棒性;以某型高超声速飞行器为对象设计了鲁棒LPV控制器.仿真结果表明:该方法能降低大包线内控制器的保守性,实现高超声速飞行器在整个设计包线内精确的指令跟踪,并且在模型参数存在大的不确定性情况下仍保证系统的鲁棒性能和稳定性. A new robust linear parameter-varying (LPV) controller design method based on gap-metric was presented for the wide flight envelope and strong model parameters uncertainties of hypersonic vehicle. A new convex decomposition strategy with the optimal gap-metric was proposed. In order to reduce the conserva tiveness of the controller, self-scheduled LPV control was implemented using the new strategy. Vertex models of the polytopic LPV system were solved considering the model parameters uncertainties to improve the robust ness of the controller nearby the vertex boundary. The new design approach was applied to the hypersonic ve hicle. Simulation results show that this new method can reduce the conservativeness of traditional LPV control lers. The command tracking and robustness of the LPV control system are in satisfactory performances. The ro- bust performance and stability of the system under strong parameters uncertainties are also guaranteed.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第11期1430-1434,1439,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60804007)
关键词 线性变参数系统 间隙度量 不确定性 高超声速飞行器 鲁棒控制 linear parameter-varying system gap metric uncertainties hypersonic vehicle robust con-
  • 相关文献

参考文献11

  • 1Shamma J M, Michael A. Gain scheduling:potential hazards and possible remedies [ J ]. IEEE Control Systems, 1992 : 101 - 107.
  • 2Lu Bei, Wu Fen. Switching LPV control designs using multiple parameter-dependent Lyapunov functions [ J ]. Automatica,2004,40(11 ) :1973-1980.
  • 3Nicolas F. Robust LPV control design for a RLV during reentry [ R] . AIAA-2010-8194,2010.
  • 4Apkarian P, Gahinet P, Becket G. Self-scheduled H control of linear parameter-varying systems :a design example [ J ]. Automat- ica,1995,31 (9) :1251-1262.
  • 5Li Wenqiang,Zheng Zhiqiang. Robust gain-scheduling controller to LPV system using gap metric [ C 1 //Proceedings of the 2008IEEE International Conference on Information and Automation. Piscataway, NT : IEEE Inc ,2008:514-518.
  • 6Ahmed K E. The gap metric: robustness of stabilization of feed- back systems [ J ]. IEEE Transactions on Automatic Control, 1985, AC-30 ( 3 ) :240-247.
  • 7Arthur M J K. Performance and the gap metric [ C ] //Proceed- ings of the 33rd Conference on Decision and Control. Piscataway, NT : IEEE Inc, 1994 : 2656-2658.
  • 8Gahinet P,Nemirovski A, Laub A J, et al. LMI control tool box [ M ]. Massachusetts :The MathWorks Inc, 1995:7.2-7.15.
  • 9John D S,Zane P,John D M. Hypersonic vehicle simulation mod- el: winged-cone configuration [ R ]. NASA TM-102610,1990.
  • 10Zhang Zenghui, Yang Lingyu, Shen Gongzhang, et al. Modeling and analysis for generic hypersonic vehicle [ C ] //IEEE 2010 8th World Congress on Intelligent Control and Automation. Pis- catawav. NT : 1EEE Inc. 2010 : 152 - 158.

同被引文献23

  • 1SAUSSIE D, SAYDY L. Gain scheduling with guardian maps for lon- gitudinal flight control [J]. Journal of Guidance Control & Dynamics, 2011, 34(4): 1045 - 1059.
  • 2SAUSSIE D, DUBANCHET V, BERARD C, et al. Robust control of a launch vehicle in atmospheric ascent based on guardian maps [C]//2012 American Control Conference. Montreal, Canada: IEEE, 2012:938 - 943.
  • 3GHAZI G, BOTEZ R M. New robust control analysis methodolo- gy for Lynx helicopter and Cessna Citation X aircraft using guardian maps, genetic algorithms and LQR theories combinations [C]//Amer- ican Helicopter Society 70th Annual Forum & Technology Display. Quebec, Canada: ResearchGate, 2014.
  • 4EL-SAKKARY A K. An upper bound to the gap between two unsta- ble systems [C]//The 1982 21st IEEE Conference on Decision and Control. Orlando, USA: IEEE, 1982:256 - 259.
  • 5EL-SAKKARY A K. The gap metric: robustness of stabilization of feedback systems [J]. 1EEE Transactions on Automatic Control, 1985, 30(3): 240 - 247.
  • 6EL-SAKKARY A K. Necessary and sufficient condition for Conver- gence in the gap metric [C] //The 1985 24th IEEE Conference on Decision and Control. FL, USA: IEEE, 1985:2048 - 2050.
  • 7SHAUGHNESSY J D, PINCKNEY S Z,MCMINN J D, et al. Hypersonic vehicle simulation model: winged-cone configuration [R].NASA TM-102610,NASA Langley Research Center, USA, 1990.
  • 8CLARK A, WU C, MIRMIRAM M, et al. Development of an airframe-propulsion integrated generic hypersonic vehicle model [C] //The 44th A1AA Aerospace Science Meeting and Exhibit, Reno, Nevada: AIAA, 2006.
  • 9SAYDY L, ANDRE L T, EYAD H A. Guardian maps and the gener- alized stability of parametrized families of matrices and polynomials [J]. Mathematics of Control Signals and Systems, 1990, 3(4): 345 - 371.
  • 10高道祥,孙增圻,罗熊,杜天容.基于Backstepping的高超声速飞行器模糊自适应控制[J].控制理论与应用,2008,25(5):805-810. 被引量:86

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部