期刊文献+

基于概念空间学习认知的机器人目标识别方法 被引量:1

Robot object recognition based on learning and cognition with conceptual space
下载PDF
导出
摘要 针对复杂环境中机器人多类目标识别通常所依托的原始特征空间中数据区分度低、难以直接表达高层次特征知识的挑战性问题,采用概念空间知识表达方法,通过多传感器数据融合与特征提取建立基本特征空间,并运用高斯混合模型表示目标的各种属性,形成具有高层知识特性的概念空间,在此基础上进行高层知识的概念学习,增强多类目标在概念空间中的可区分性.利用支持向量机作为机器人的分类器,实现针对室内环境的多类目标物体的准确识别.实验结果表明:该方法不但有效地获取和表达待识别目标的高层特征知识,而且能有效提高机器人的目标识别与环境感知能力,展现出优越的分类识别性能. In view of the challenging issue for robot multi-class object recognition in complex environ ments with original feature space because those features can only embody some low level knowledge with poor discriminative performance, an approach to robot object recognition was presented based on conceptual space methodology. At first, the basic feature space was built through multi-sensor data fusion and feature extrac tion, thus gaussian mixture models (GMM) was employed to model objects properties in order to build con- ceptual space with characteristic of high level knowledge so as to learn the concepts of objects and improve their discriminative performance. Then support vector machine (SVM) was used to carry out multi-class object recognition for robot in indoor clutter environment. The experimental results demonstrate that the proposed method can not only represent the high level knowledge of objects, but also improve the performance of object recognition and environment perception of robot effectively.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第11期1502-1506,1511,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60875072 61273350) 北京市自然科学基金资助项目(4112035) 中澳国际合作资助项目(2007DFA11530)
关键词 概念空间 机器人 多类目标识别 多传感器信息融合 conceptual space robot multi-class object recognition multi-sensor data fusion
  • 相关文献

参考文献10

  • 1Flynn H. Machine learning applied to object recognition in robot search and rescue systems [ D ]. Oxford, England: University of Oxford ,2009.
  • 2黄荣瑛.机器人视觉系统模糊识别抓取物算法[J].北京航空航天大学学报,2009,35(2):197-200. 被引量:1
  • 3Tkach I, Bechar A,Edan Y. Switching between collaboration lev- els in a human-robot target recognition system [ J]. IEEE Trans- actions on Systems, Man, and Cybernetics, Part C: Applications and Reviews ,2011,41 (6) :955-967.
  • 4Chella A,Frixione M, Gaglio S. Conceptual spaces for computer vision representations [ J ]. Artificial Intelligence Review,2001,16(2) :137-152.
  • 5Kira Z. Inter-robot transfer learning for perceptual classification [ C ]// van der Hoek, Kaminka, Lesprance, Luck and Sen. Proc of 9th Int Conf on Autonomous Agents and Multiagent Systems. Toronto : IFAAMAS ,2010 : 13 -20.
  • 6Gardenfors P. Conceptual spaces : the geometry of thought [ M ]. Cambridge : MIT Press, 2000.
  • 7陈鹏,符德江.物体识别中的视点问题[J].心理科学进展,2006,14(1):12-17. 被引量:3
  • 8Felzenszwalb P F, Hutten|ocher D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004,59 (2) : 167-181.
  • 9Bishop C M. Pattern recognition and machine learning [ M ]. Singapore : Springer,2006.
  • 10Chang C C, Lin C J. LIBSVM:a library for support vector ma- chines [J]. ACM Transactions on Intelligent Systems and Tech- nology ,2011,2 ( 3 ) : 1-27.

二级参考文献33

  • 1孙仲康.数字图象处理及应用[M].北京:国防工业出版社,1985:50-58
  • 2Christian Martens. Teilautonome aufgabenbearbeiturng bei rehabilitionsrobotern mit manipulator[ M ]. Aachen: Shaker Verlag, 2004 : 2 - 24
  • 3Dipl-Ing Thomas Trittin. Methode der virtuellen punkte zur autonomen bildbasierten roboterregelung [ D ]. Bremen: Institute of Automation, Universitaet Bremen,1999:28 -35
  • 4Dipl-Ing Constantin V,Altrock M O R. Fuzzy logic,band 1 technologie [ M ]. Muenchen Wien : Oldenbourg Verlag, 1995 : 18 - 23
  • 5Dipl-Ing ConstantinV, Altrock M O R. Fuzzy logic, band 3, werkzeuge [ M ]. Muenchen Wien : Oldenbourg Verlag, 1995 : 35 -41
  • 6Bülthoff H H,Edelman S.Psychophysical support for a two-dimensional view interpolation theory of object recognition.Proceedings of the National Academy of Science of the United States of America,1992,89:60~64
  • 7Hayward W G,Tarr M J.Testing conditions for viewpoint invariance in object recognition.Journal of Experimental Psychology:Human Perception and Performance,1997,23(5):1511~1521
  • 8Bar M.Viewpoint dependency in visual object recognition does not necessarily imply view-centered representation.Journal of Cognitive Neuroscience,2001,13(6):793~799
  • 9Marr D.视觉计算理论姚国正等译北京:科学出版社,1988.282~345
  • 10Ullman S.An approach to object recognition:aligning pictorial descriptions.A.I.Memo 931,The Artificial Intelligence Lab.,M.I.T.,1986.1~57

共引文献2

同被引文献13

  • 1Rabinovich Z L. Natural thinking mechanisms and computer in- telligence[J]. Cybernetics and Systems Analysis, 2003,39(5) : 695 - 700.
  • 2Deco G,Rolls E T.A neurodynanical cortical model of visual attention and invariant object recognition[ J ]. Vision Research, 2004,44(6) :621 - 642.
  • 3Itti L, Koch C. Computational modelling of visual attention[ J]. Nature Reviews Neuroscience, 2001,2(3 ) : 194 - 203.
  • 4Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention[ J]. Vision Research,2000, 40(10) : 1489 - 1506.
  • 5Weng J,Luwang T,Lu H,et al.A multilayer in-place learning network for development of general invariances[ J]. Internation- al Journal of Humanoid Robotics, 2007,4 ( 02 ) : 281 - 320.
  • 6Ji Z, Weng J, Prokhorov D. Where-what network 1: "Where" and "What" assist each other through top-down connections [ A]. 7th IEEE, International Conference on Development and Learning[ C ]. Monterey: IEEE, 2008.61 - 66.
  • 7Ji Z, Weng J. WWN-2: A biologically inspired neural network for concurrent visual attention and recognition [ A ]. The IEEE 2010 International Joint Conference on Neural Networks[ C ]. Barcelona: IEEE,2010.1 - 8.
  • 8Luciw M, Weng J. Where What Network 3: Developmental top-down attention with multiple meaningful foregrounds[ A]. International Joint Conference on Neural Networks [ C ]. Barcelona: IEEE, 2010.4233 - 4240.
  • 9Chon J R. A Gestalt-Minimalism-hased decision-making mod- el for evaluating product form design[ J]. International Jomanal of Industrial Ergonomics, 2011,41 (6) : 607 - 616.
  • 10Weng J, Luciw M. Dually optimal neuronal layers:Lobe com- ponent analysis[ J]. IEEE. Transactions on Autonomous Mental Development, 2009,1 ( 1 ) :68-85.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部