期刊文献+

激光共聚焦显微拉曼光谱法测定籼米淀粉回生 被引量:5

The Retrogradation of Long-shaped Rice Starch Determined by Using Laser Confocal Microraman Spectrometry
原文传递
导出
摘要 目的和方法:本文研究利用激光共聚焦显微拉曼(Laser Confocal Micro-Raman,LCM-Raman)分子振动光谱快速检测籼米淀粉回生的可能性;结果:拉曼光谱中一些振动模式(包括1122.37cm-1处的C-O伸缩和C-O-H弯曲振动,1082.83cm-1的C-O-H弯曲振动,1050.05cm-1的C-C伸缩振动,854.31cm-1的C-H变形振动和440.66cm-1处的吡喃环骨架振动)的相对强度均随淀粉回生程度的增加呈现降低的规律。将这些拉曼峰的相对强度倒数与DSC回生焓值进行相关性分析发现,854.31cm-1、1082.83cm-1和1050.05cm-1这些峰的相关系数均能在0.9以上。结论:这3个振动模式的相对强度变化可作为定量指示籼米淀粉回生程度的多重指标。 The possibility of laser confocal micro-raman (LCM-Raman) spectroscopy for rapid analyzing the retrogra- dation of long -shaped rice starch was investigated. The results showed that the relative intensity of some vibrational modes reduced regularly with increased extent of the retrogradation. These peaks included C-O stretching and C -O -H bending (1 122.37 cm -1 ), C-O-H bending (1 082.83 cm -1 ), C-C stretching (1 050.05 cm -1 ), C-H deformation (854.31 cm -1 ), and skeletal modes of pyranose ring(440.66 cm -1 ). By the correlation analysis between retrogradation enthalpy of DSC and the relative intensity reciprocal of above vibrational modes, these LCM-Raman peaks at 854.31 cm -1 , 1 082.83 cm -1 , and 1 050.05 cm -1 had correlation coefficient above 0.9. Therefore, the relative intensity change of the three vibrational modes listed above can be as multi-index to quantify the degree of the retrogradation.
出处 《中国食品学报》 EI CAS CSCD 北大核心 2012年第11期204-209,共6页 Journal of Chinese Institute Of Food Science and Technology
关键词 籼米淀粉 回生 激光共聚焦显微拉曼 long-shaped rice starch retrogradation laser confocal micro-raman
  • 相关文献

参考文献10

  • 1Karim A A, Norziah M H, Seow C C. Methods for the study of starch retrogradation[J]. Food Chemistry, 2000, 71 : 9-36.
  • 2Phillips G O, Wedlock D J, Williams P A. Gums and stabilizers for the food industry 3[M]. London: Elsevier Ap- plied Science Publishers, 1986: 485-496.
  • 3Fechner P M, Siegfried W, Peter K, et al. Studies of the retrogradation process for various starch gels using Ra- man spectroscopy[J]. Carbohydrate Research, 2005, 340: 2563-2568.
  • 4Lin J H, Chang Y H. Molecular degradation rate of rice and corn starches during acid-methanol treatment and its relation to the molecular structure of starch[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 5880-5886.
  • 5Gunaratne A, Hoover R. Effect of heat-moisture treatment of the structure and physicochemiscal properties of tuber and root starches[J]. Carbohydrate Polymers, 2000, 49: 425-437.
  • 6Varavinit S, Shobsngob S, Varanyanond W, et al. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cuhivars of Thai rice[J]. Starch/St?rke, 2003, 55: 410-415.
  • 7张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2004.
  • 8Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spec- troscopy[J]. Journal of Agricultural and Food Chemistry, 2002, 50: 3912-3918.
  • 9Fechner P M, Wartewig S, Kiesow A, et al. Influence of water on molecular and morphological structure of various starches and starch derivatives[J]. Starch/Starke, 2005, 57: 605-615.
  • 10Schuster K C, Ehmoser H, Gapes J R, et al. On-line FT-Raman spectroscopic monitoring of starch gelatinisation and enzyme catalysed starch hydrolysis[J]. Vibrational Spectroscopy, 2000, 22: 181-190.

共引文献5

同被引文献84

引证文献5

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部