期刊文献+

一类对负顾客进行服务的排队系统主算子的豫解集

Resolvent Set of Queueing Model with Service to Negative Customers
下载PDF
导出
摘要 针对M/G1/1系统排队模型,将其转化成Banach空间中抽象Cauchy问题,研究了模型主算子的豫解集。求出了该模型主算子的共轭算子,运用线性算子及其共轭算子谱之间的关系,研究其主算子的共轭算子的豫解集,得到在虚轴上除0外所有点都属于该模型主算子的豫解集。 According to M/G1/1 queue model, we study the resolvent set of this model by convering the model into an abstract Cauchy problem in a Banach space. We get the adjoint operator of the main operator of the queueing model with service to negative customers. By using the relation between the spectrum of a linear operator and its adjoint operator, we study the resolvet set of the operator corresponding to this model, and the result all points on the imaginary axis except for zero belong to the resolvent set of the operator is obtained.
出处 《江南大学学报(自然科学版)》 CAS 2012年第6期747-752,共6页 Joural of Jiangnan University (Natural Science Edition) 
关键词 负顾客 豫解集 共轭算子 negative customers, adjoint operator, resolvent set
  • 相关文献

参考文献6

  • 1朱翼隽.对负顾客进行服务的M/G1/1系统的等待时间[J].江苏大学学报(自然科学版),2003,24(4):1-5. 被引量:4
  • 2王秀玲,邢喜民.一类对负顾客进行服务的M/G1/1系统的适定性[J].江南大学学报(自然科学版),2010,9(3):362-367. 被引量:1
  • 3张恭庆,郭懋正.泛函分析(下)[M].北京:北京大学出版社,1990.
  • 4张恭庆,郭懋正.泛函分析(上)[M].北京:北京大学出版社,1990.
  • 5YU L, Lyubich V Q. Phong asymptotic stability of linear differential equations in Banach space[ J ]. Studia Math, 1998 (88) :34-37.
  • 6Geni Gupur, LI Xue-zhi, ZHU Guang-tian. Functional Analysis Method in Queueing Theory[ M ]. Hertfordshire: Research Infor- mation Ltd. ,2001.

二级参考文献18

  • 1Geni Gupur,LI Xue-zhi,ZHU Guang-tian.Functional Analysis Method in Queueing Theory[M].Hertfordshire:Research Information Ltd,2001.
  • 2Adams R A.Sobolev Spaces[M].北京:世界图书出版公司,2009.
  • 3NageI R.One-Parameter Semigroups of Positive Operators[M].Berlin:Springer-Verlag,1986.
  • 4Pazy A.Semigroups of linear Operators and Application to Partial Differential Equations[M].New York:Springer-Verlag,1983.
  • 5Widder D V. The Laplace Transform [ M]. New York:Princton University Press, 1941.
  • 6Ross S M. Stochastic Processes[M]. New York: John Wiley, 1983.
  • 7Gelenbe E. Product Form Netowrk with Negative and Positive Customers[J ], J Appl Prob, 1991, 28: 656- 663.
  • 8Henderson W. Queudng Networks with Negative Customers and Negative Queue Length[ J ]. J Appl Prob, 1993,30:931- 942.
  • 9Harrison P G,Pitel E.Sojourn Times in Single Server Queues with Negative Customers[J].J Appl Prob 1993, 30:943-963.
  • 10Harrison P G, Pitel E.Response Time Distributions in Tandem G- Networks[J] .J Appl Prob,1995,32:224- 247.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部