期刊文献+

球面上Wirtinger不等式的一个几何应用

A Geometrical Application of the Wirtinger Inequality on Sphere-space
下载PDF
导出
摘要 利用球面上的Wirtinger不等式研究由Fradelizi,Giannopoulos和Meyer得到一组关于均质积分的不等式,对于这细小等式中k=n-2的情形给出了一种简单的证明. In this paper, we investigate some quermassintegrals inequalities which have been obtained by Fradelizi, Giannopoulos and Meyer, via the Wirtinger inequality on sphere-space. Further,we give a simple proof of this inequality for the case k = n-2.
作者 马磊 李妮
出处 《湖北民族学院学报(自然科学版)》 CAS 2012年第4期376-379,共4页 Journal of Hubei Minzu University(Natural Science Edition)
基金 重庆师范大学基金项目(12XLB026)
关键词 凸体 混合体积 均质积分 WIRTINGER不等式 convex body mixed volume quermassintegrals Wirtinger inequality
  • 相关文献

参考文献9

  • 1Schneider R, Weil W. Zonoids and related topics, Convexity and Its Applications [ M ]. Basel : Birkhiuser, 1983:296-317.
  • 2Burago Y D, Zalgaller V A. Geometric inequalities [ M ]. Berlin : Springer-Verlag, 1988.
  • 3Stanley R P. Two combinatorial applications of the Aleksandrov-Fenchel inequalities [ J ]. J C ombin Theory, 1981,31 A:56-65.
  • 4Santalo L A. Integral Geometry mad Geometric Probability [ M ]. Addison Wesley Publishing Company, 1976.
  • 5Giannopoulos A, Hartzoulaki M, Paouris G. On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body J ]. Proc Amer Math Soc ,2002,130:2403-2412.
  • 6Fradelizi M, Giannopoulos A, Meyer M. Some inequalities about mixed volumes[ J]. Israel Journal of Math ,2003,135 : 157-179.
  • 7Beckenbach E F, Bellman R. Inequalities [ M ]. Berlin : Springer-Verlag, 1971.
  • 8Bergstrom I-I. A triangle inequality for matrices [ J ]. Den Elfte Skandinaviske Matematikerkongress. Trond-heim, 1949. Oslo Johan Grundt Tanums Forlag, 1952.
  • 9李小燕,冷岗松.SOME INEQUALITIES ABOUT DUAL MIXED VOLUMES OF STAR BODIES[J].Acta Mathematica Scientia,2005,25(3):505-510. 被引量:5

二级参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部