期刊文献+

异方差情形下多元方差分析中新的广义p值

New Generalized p-Values for MANOVA under Unequal Covariances
下载PDF
导出
摘要 对于带有不相等协方差矩阵的多元方差分析问题,一类新的广义检验变量被定义去检验k个多元正态均值向量的相等性假设.基于该广义检验变量的广义p值是充分统计量的函数,当k=2时,即对于多元Behrens-Fisher问题,该新的广义检验变量和Gamage等提供的变量等价.数值结果表明,所得的广义p值检验能够保证第一类错误概率不超过名义水平,且其优于经典的似然比检验和Gamage等提供的检验. For MANOVA problem under unequal covariance matrices, a new class of generalized test variable was defined to test the equality of the mean vectors of k multivariate normal popula- tions based on the concept of generalized p-values. The generalized p-values based on these gen- eralized test variables were functions of sufficient statistics. It was shown that for the case k= 2, i.e. the multivariate Behrens-Fisher problem, the new generalized test variables were equivalent to that proposed by Gamage et al. Numerical results showed that our generalized p-values test for comparing the equality of several mean vectors had a type I error probability not exceeding the nominal level and it was better than the classical likelihood ratio test and the procedure given by Gamage et al.
作者 叶海
出处 《淮海工学院学报(自然科学版)》 CAS 2012年第4期5-10,共6页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 Behrens—Fisher问题 广义检验变量 MANOVA 异方差性 Behrens-Fisher problem generalized test variable MANOVA heteroseedasticity
  • 相关文献

参考文献15

  • 1BENNET B M. Note on a solution of the generalized Behrens-Fisher problem[J]. Annals of the Institute of Statistical Mathematics, 1951,2 : 87-90.
  • 2JAMES G S. Test of linear hypotheses in univariate and multivariate analysis when the ratios of the popu- lation variances are known[J]. Biometrika, 1954, 41 : 19-43.
  • 3KIM S. A practical solution to the multivariate Beh- rens-Fisher problem [J]. Biometrika, 1992, 79: 171- 176.
  • 4CHRISTENSEN W F,RENCHER A C. A comparison of type I error rates and power levels for several solu- tions to the multivariate Behrens-Fisher problem[J]. Communications in Statistics-Simulation and Computa- tion, 1997,26 :1251-1273.
  • 5JOHNSON R A,WEERAHANDI S. A Bayesian solu- tion to the multivariate Behrens-Fisher problem[J]. Bi- ometrika, 1998,83 : 145-149.
  • 6GAMAGE J, MATHEW T, WEERAHANDI S. Gen- eralized p-values and generalized confidence regions for the mul VA[J] 177-189 ivariate Behrens-Fisher problem and MANO- Journal of Multivariate Analysis, 2004, 88.177-189.
  • 7TUSI K W, WEERAHANDI S. Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters[J]. Journal of the American Sta- tistical Association, 1989,84:602-607.
  • 8WEERHANDI S. Testing regression equality with un- equal variances [J ]. Econometrica, 1987, 55: 1211- 1215.
  • 9WEERAHANDI S. Testing variance components in mixed models with generalized p-values[J]. Journal of the American Statistical Association, 1991, 86: 151- 153.
  • 10WEERAHANDI S. Exact Statistical Methods for Da- ta Analysis[M]. New York.. np, 1995.

二级参考文献17

  • 1李新民,徐兴忠,李国英.广义P值的Fiducial推断[J].中国科学(A辑),2007,37(6):733-741. 被引量:4
  • 2Rao J N K, Sutradhar B C, Yue K. Generalized least squares F-test in regression analysis with two-stage cluster samples[J]. Journal of the American Statistical Association, 1993, 88:1388-1391.
  • 3Wu C F, Holt D, Halmes D J. The effect of two-stage sampling on F statistics[J]. Journal of the American Statistical Association, 1988, 83:150-159.
  • 4Wang S G, Liski E P. Small sample properties of the two-way error component regression[J]. ACTA Mathematica Application Sinica, 1999, 3:287-296.
  • 5Wang S G, Ma W Q. On exact tests of linear hypothesis in linear models with nested error structure[J]. Journal of Statistical Planning and Inference, 2002, 106:225-233.
  • 6Tusi K W, Weerahandi S. Generalized p value in significance testing of hypotheses in the presence of nuisance parameters[J]. Journal of the American Statistical Association, 1989, 84:602-607.
  • 7Weerahandi S. Generalized confidence intervals[J]. Journal of the American Statistical Association, 1993, 88:899-905.
  • 8Weerihandi S. Testing variance components in mixed models with generalized p values[J]. Journal of the American Statistical Association, 1991, 86:151-153.
  • 9Zhou L P, Mathew T. Some tests for variance components using generalized p values models[J]. Technometrics, 1994, 36:394-402.
  • 10Weerahandi S, Berger V W. Exact inference for growth curves with intraclass correlation structure[JJ. Biometrics, 1999, 55:921-924.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部