期刊文献+

基于簇的块稀疏压缩感知的60GHz信道估计 被引量:6

60 GHz Channel Estimation Based on Cluster-classification and Block-sparse Compressed Sensing
下载PDF
导出
摘要 基于压缩感知设计适用于60 GHz毫米波通信系统的信道估计方案,深入研究了正交匹配追踪(OMP)算法和正则正交匹配追踪(Regularized OMP)算法的60 GHz信道估计性能;在此基础上,充分发掘60 GHz无线多径信道所呈现出的分簇特性,提出一种新颖的基于簇分级的稀疏压缩感知重构算法。新算法在有效减少重构迭代次数的前提下,亦能显著降低信道估计误差。综合对比分析了基于簇分块稀疏压缩感知重构算法和现有压缩感知算法在60 GHz信道估计应用中的重构性能,仿真结果表明,压缩感知算法可有效应用于60 GHz系统信道估计,而新设计的基于簇分级的稀疏压缩感知算法则在估计精度和实现复杂度方面具更优越性能。 The application of CS-OMP and CS-ROMP in channel estimation of 60 GHz millimeter-wave communication systems is investigated. Then the clustering characteristics of 60 GHz wireless multipath channel are fully exploited, based on which, a cluster- classification and block-sparse compressed sensing algorithm is proposed. The new algorithm significantly reduces the reconstruction error of channel estimation under the premise of less iteration times. Error ratios of CS-OMP, CS-ROMP and the proposed algorithm are compared through simulation. The results indicate that CS-OMP and CS-ROMP algorithm can be used in 60 GHz channel estimation effectively. However,the cluster-classification and block-sparse compressed sensing algorithm has a superior performance in channel estimation.
出处 《无线电通信技术》 2012年第6期32-34,41,共4页 Radio Communications Technology
关键词 60 GHZ 压缩感知 信道估计 CS—ROMP 分级 60 GHz compressed sensing channel estimation CS-ROMP cluster-classification
  • 相关文献

参考文献7

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 2STOJNIC M. On the Reconstruction of Block-sparse Signals with an Optimal Number of Measurements [ J]. IEEE Trans. ,2009,57 ( 8 ) : 1076 - 1082.
  • 3DONOHO D L. Compressed sensing [ J ]. IEEE Trans. on Information Theory, 2006,52 ( 4 ) : 1289 - 1306.
  • 4CHEN J, HUO X. Theoretical Results Sparse Representations of Multiple-measurement Vectors [ J ], IEEE Trans, 2006,54 ( 12 ) : 4634 - 4643.
  • 5LI B,ZHOU Z,LI D,et al. Efficient Cluster Identification for Measured Uhra-wideband Channel Impulse Response in Vehicle Cabin [ J ]. Progress In Electromagnetics Reseach ,2011,20 : 121 - 147.
  • 6ELDAR Y C, MISHALI M. Robust Recovery of Signals from a Structured Union of Subspaces [ J ]. IEEE Trans. 2009,55(11) :5302 -5316.
  • 7ZHANG P, HU Z,QIU R C, et al. A Compressed Sensing Based Uhra-wideband Communication System [ C ] // IEEE International Conference on Communications ( ICC ) ,2009,20 : 1191 - 1194.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献711

同被引文献32

  • 1CANDIES E, ROMBERG J, TAO T. Robust Uncertainty Principles:Exact Signal Reconstruction from Highly In- complete Frequency Information [ J ]. IEEE Trans. Informa- tion Theory ,2006,52(2) :489-509.
  • 2CANDES E,ROMBERG J.Quantitative Robust Uncertain- ty Principles and Optimally Sparse Decompositions [ J ]. Foundations of Computational Mathematics, 2006,6 (2) : 227-254.
  • 3DONOHO D L. Compressed Sensing [ J ]. IEEE Trans. In- formation Theory,2006,52(4) : 1289-1306.
  • 4CANDS E,TAO T. Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies [ J ]. IEEE Trans. Information Theory, 2006, 52 ( 12 ) : 5406 - 5425.
  • 5CANDES E, TAO T. Decoding by Linear Programming [ J ]. IEEE Trans. Information Theory, 2005, 51 ( 12 ) : 4203- 4215.
  • 6DONOHO D L.For Most Large Underdetermined Systems of Linear Equations,the Minimal l l-norm Solution is also the Sparsest Solution [ J ]. Communications on Pure and Applied Mathematics ,2006,59(6) :797-829.
  • 7DONOHO D L.Compressed Sensing[J].IEEE Transactions on Information Theory,2006,52(4):1 289-1 306.
  • 8CANDES E J,ROMBERG J,TAO T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 9BABADI B,KALOUPTSIDIS N,TAROKH V.Asymptotic Achievability of the Cramér-Rao Bound for Noisy Compressive Sampling[J].IEEE Transactions on Signal Processing,2009,57(3):1 233-1 236.
  • 10PROVOST J,LESAGE F.The Application of Compressed Sensing for Photoacoustic Tomography[J].IEEE Transactions on Medical Imaging,2009,28(4):585-594.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部