期刊文献+

MIMO系统中球形解码算法性能仿真比较 被引量:2

Sphere Decoding Algorithm Performance Simulation and Comparison for MIMO System
下载PDF
导出
摘要 球形解码(Sphere Decoder,SD)算法能以较低的复杂度实现多输入多输出(Multiple Input Multiple Output,MIMO)系统的最优检测,是当前受到普遍关注的MIMO检测算法。对当前球形解码的主要研究成果进行综述,根据搜索策略进行分类,重点分析基于深度优先策略的VB、CL和基于宽度优先策略的K-Best、FSD算法,并且讨论了几种初始半径的选择方法,最后在准静态平坦瑞利衰落环境下对上述算法进行了性能仿真比较。 Sphere Decoding(SD) algorithm can achieve the best performance for multiple input multiple output (MIMO)systems detection with lower complexity. It is a popular MIMO detection algorithm at present. The main research results of SD algorithm are summarized. Classified by search strategy, depth-first strategy based algorithms ( VB, CL) and breadth-first strategy based algorithms (K-Best,FSD) are analyzed. Moreover, several initial radius selection methods are introduced. Finally, the performances of these algorithms are compared by simulation under the quasi-static Rayleigh fiat fading environment.
出处 《无线电通信技术》 2012年第6期38-41,共4页 Radio Communications Technology
基金 重庆市科技攻关计划项目(CSTC 2011AB2044) 重庆市科委重点实验室专项经费资助 重庆邮电大学移动通信技术重点实验室开放研究基金资助
关键词 MIMO 最大似然检测 球形解码 搜索策略 MIMO maximum-likelihood detection sphere decoding search strategy
  • 相关文献

参考文献7

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 2STOJNIC M. On the Reconstruction of Block-sparse Signals with an Optimal Number of Measurements [ J]. IEEE Trans. ,2009,57 ( 8 ) : 1076 - 1082.
  • 3DONOHO D L. Compressed sensing [ J ]. IEEE Trans. on Information Theory, 2006,52 ( 4 ) : 1289 - 1306.
  • 4CHEN J, HUO X. Theoretical Results Sparse Representations of Multiple-measurement Vectors [ J ], IEEE Trans. 2006.54 ( 12 ) : 4634 - 4643.
  • 5LI B,ZHOU Z,LI D,et al. Efficient Cluster Identification for Measured Uhra-wideband Channel Impulse Response in Vehicle Cabin [ J ]. Progress In Electromagnetics Reseach ,2011,20 : 121 - 147.
  • 6ELDAR Y C, MISHALI M. Robust Recovery of Signals from a Structured Union of Subspaces [ J ]. IEEE Trans. 2009,55(11) :5302 -5316.
  • 7ZHANG P, HU Z,QIU R C, et al. A Compressed Sensing Based Uhra-wideband Communication System [ C ] // IEEE International Conference on Communications ( ICC ) ,2009,20 : 1191 - 1194.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献710

同被引文献18

  • 1高凌翔.MIMO系统中检测方法的研究及其改进[J].无线电通信技术,2005,31(5):9-11. 被引量:2
  • 2赵辰,刘应状,朱光喜.VLST系统中ZF检测算法的研究[J].无线电通信技术,2007,33(2):37-39. 被引量:5
  • 3PROAKISJohnG.数字通信(第4版)[M].北京:电子工业出版社.2003:540-545.
  • 4LANEMAN J N,C TSE D N,WORNELL G W.Cooperative Diversity in Wireless Networks:Efficient Protocols and Outage Behavior[J].IEEE Transactions on Information Theory,2004,50(12):3 062-3 080.
  • 5VAN E C,MEULEN Der.Three Terminal Communication Channels[C]∥Adv.Appl.Pro,1971:120-154.
  • 6COVER T M,EI GAMAL A A.Capacity Theorems for the Relay Channel[J].IEEE Transactions on Information Theory,1979,25(5):572-584.
  • 7TELATAR E.Capacity of Multi-antenna Gaussian Channels[J].European Transacations on Telecommuni-cations,1999,10(6):585-595.
  • 8WANG B,ZHANG J,Host-Madsen A.On the Capacity of MIMO Relay Channels[J].IEEE Transactions on Information Theory,2005,51(1):29-23.
  • 9NABAR R U,BOLCSKEI H,KNEUBUHLER F W.Fading Relay Channels:Performance Limits and Space-Time Signal Design[J].IEEE Journal on Selected Areas inCommunications,2004,22(6):1 099-1 109.
  • 10MUNOZ-MEDINA O,VIDAL J,AGUSTIN A.Linear Transceiver Design in Non-regenerative Relay with Channel State Information[J].IEEE Transactions on Signal Processing,2007,55(6):2 593-2 604.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部