期刊文献+

基于水动力试验的深海开架式潜水器三维轨迹跟踪控制平台设计(英文) 被引量:2

3D Trajectory Tracking Control Platform Design for Deep Sea Open-framed Remotely Operated Vehicle based on Hydrodynamics Test
下载PDF
导出
摘要 由于深海潜水器的高研发成本和海洋环境的复杂性,文章设计并开发了一个深海潜水器近海底三维轨迹跟踪控制仿真平台,仿真平台主要包括海图数据处理、海底环境生成、水下机器人建模、轨迹跟踪仿真四个主要模块。建造了1:1.6的ROV缩尺比模型,通过VPMM和LAHPMM进行了模型水动力试验,获得了相关的水动力系数,并根据潜水器的结构布置特征,建立了5自由度的潜水器运动数学模型。在Windows操作系统VC++6.0集成环境下,通过OpenGL图形开发库,搭建了该仿真平台,并进行了初步调试,获得了比较理想的模拟效果。 In order to deal with the high cost of R&D and the risk of oceanic environment, this pa- per designs trajectory tracking control simulating platform for deep sea open-framed remotely oper- ated vehicle, which is being researched and developed by Shanghai Jiao Tong University. Hydrody- namics coefficients are obtained through the VPMM and LAHPMM towing tests, and kinematic and dynamic model of the vehicle are found based on hydrodynamic tests. The platform includes chart data processing, seafloor condition generating, vehicle modeling and trajectory tracking displaying, and virtual visual seafloor is set up through large scale chart data. Finally, the platform is developed by using VC++6.0 and OpenGL.
出处 《船舶力学》 EI 北大核心 2012年第12期1408-1416,共9页 Journal of Ship Mechanics
基金 Supported by the National High-Tech R&D Program of China (“863” Program, Grant No.2008AA092301)
关键词 有缆式潜水器 水动力试验 VPMM LAHPMM 轨迹跟踪 Remotely Operated Vehicle Planar Motion Mechanism) (ROV) hydrodynamic tests VPMM (Vertical LAHPMM (Large Amplitude Horizontal Planar Motion Mechanism) trajectory tracking
  • 相关文献

参考文献2

二级参考文献9

共引文献21

同被引文献23

  • 1徐玉如,肖坤.智能海洋机器人技术进展[J].自动化学报,2007,33(5):518-521. 被引量:52
  • 2俞建成,张艾群,王晓辉,苏立娟.基于模糊神经网络水下机器人直接自适应控制[J].自动化学报,2007,33(8):840-846. 被引量:36
  • 3Soylu S, Buckham B J, Podhorodeski R E A chattering- free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation[J]. Ocean Engineering, 2008, 35(16): 1647-1659.
  • 4Akmal M, Yusoff M, Arshad M R. Active fault tolerant control of a remotely operated vehicle propulsion system[J]. Procedia Engineering, 2012, 41: 622-628.
  • 5Inoue T, Katsui T, Murakami H, et al. Preliminary research on the thruster assisted crawler system for a deep sea ROV[C]. OCEANS'09 IEEE Bremen:Balancing Technology with Future Needs. Bremen: IEEE, 2009: 1-5.
  • 6Allen B, Stokey R, Austin T, et al. REMUS: A small, low cost AUV; system description, field trials and performance results[C]. Proc of MTS/IEEE Oceans. Halifax: IEEE, 1997: 994-1000.
  • 7Prabhakar S, Buckham B. Dynamics modeling and control of a variable length remotely operated vehicle tether[C]. Proc of MTS/IEEE Oceans. Washington DC: IEEE, 2005: 1255-1262.
  • 8Tehrani N H, Heidari M, Zakeri Y, et al. Development, depth control and stability analysis of an underwater remotely operated vehicle(ROV)[C]. The 8th IEEE Int Conf on Control and Automation. Xiamen: IEEE, 2010: 814-819.
  • 9Zanoli S M, Conte G. Remotely operated vehicle depth control[J]. Control Engineering Practice, 2003, 11(4): 453- 459.
  • 10Sharma R, Rana K P S, Kumar V. Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator[J]. Expert Systems with Applications, 2014, 41(9): 4274-4289.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部