摘要
在经典的三阶迭代方法基础上,利用一阶导函数的差商代替函数本身的二阶导数,由此得到求解非线性方程根的一个不带二阶导数的迭代公式,并证明了公式具有三阶收敛性。
The classic third-order iterative algorithm is transformed by using the divided difference instead of the second derivative and then a new iterative algorithm is proposed. Under some mild conditions, it 's proved that the algorithm is third-order convergent. Numerical experiments also show that the algorithm is effective .
出处
《青岛大学学报(自然科学版)》
CAS
2012年第4期1-5,共5页
Journal of Qingdao University(Natural Science Edition)
基金
山东省高等学校科技计划项目(J10LA05)
关键词
非线性方程求根
迭代法
差商
收敛阶
Solution of a nonlinear equation
Iterative algorithm
Divided difference
Order of convergence