期刊文献+

基于假设间隔的弱随机特征子空间生成算法

On Generating Algorithm of Weak Random Subspace Based on Simba
下载PDF
导出
摘要 集成算法是机器学习领域的研究热点。随机子空间算法是集成算法的一个主要算法。随机子空间生成的特征子集可能含有冗余特征、甚至噪声特征,影响算法的分类精度。为此,提出了一种基于假设间隔的弱随机特征子空间生成算法(WRSSimba),有效去除了特征子集中冗余特征和噪声特征。在UCI数据集上的实验结果表明,WRSSimba的分类性能优于随机子空间算法和Simba算法。 The integration algorithm is a hot research field of machine learning, and random subspace algorithm is a major algorithm of integration algorithm. But feature subset generated by random subspace may contain redundant feature and even noisy feature that affects the accuracy of classification. Therefore, in this paper, a new algorithm of weak random subspace based on Simba(WRSSimba) is introduced. This algorithm effectively eliminates the redundancy and the noisy feature of feature subspace. The experimental results on UCI datasets show that, its performance of classification is better than random subspace algorithm.
作者 李志亮 黄丹
出处 《绵阳师范学院学报》 2012年第11期98-110,共13页 Journal of Mianyang Teachers' College
关键词 集成学习 随机子空间 假设间隔 Integration learning random subspace Simba
  • 相关文献

参考文献21

  • 1Y. Freund , R. E. Schapire. A Short Introduction to Boosting [ J ]. Journal of Japanese Society for Artificial Intelligence, 1999,14(5) :771 -780.
  • 2T. G.. Dietterich, Ensemble Methods in Machine Learning. First International Workshop on Multiple Classifier Systems, 2000:1 -15.
  • 3Y. Freund, R. E. Sehapire. A decision - theoretic generalization of on - line learning and an application to boosting [ J ]. Journal of Computer and System Sciences ,19977:119 - 139.
  • 4S. Miyoshi, K. Hara, M. Okada. Analysis of ensemble learning using simple pereeptrons based on online learning theory [ C ]. Neural Networks, 2004,157 : 1151 - 1156.
  • 5T. K. Ho. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(8) :832 - 844.
  • 6Wolpert D H. Stacked generalization. Neural Networks, 1992,5 (2) :241 - 260.
  • 7Breiman, L. Bagging Predictors. Machine Learning,1996,24(2) :123 -140.
  • 8L. Breiman. Random forests. Machine Learning,2001,45:5 - 32.
  • 9Robert E. Schapire. The Strength of Weak Learnability. Machine Learning, 1990,5 (2) : 197 - 227.
  • 10M. Skurichina , R. P. W. Duin. Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis & Applications ,2002,5 (2) : 121 - 135.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部