期刊文献+

带有点源和非局部边界条件的多孔介质方程解的爆破

Blowup for a Porous Medium Equation with Localized Source and Nonlocal Boundary Condition
下载PDF
导出
摘要 研究了一类带有点源和非局部边界条件的多孔介质方程非负解的爆破现象.运用经典的上、下解方法,并通过比较原理,在不同的假设下,构造出了方程合适的上解或下解,得出了该方程解的整体存在性和在有限时间爆破的充分条件. In this paper, the authors investigate the blowup properties of the non-negative solutions to a porous medium equation with localized source and nonlocal boundary condition. Using the classical super and sub solution method and the comparison principle and constructing the appropriate super or sub solu tions for the equation under different hypotheses, the sufficient conditions for the global existence and finite time blowup of the solution are obtained.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第12期110-113,共4页 Journal of Southwest University(Natural Science Edition)
基金 中央高校基金资助项目(CDJXS10100020)
关键词 点源 非局部边界 多孔介质 爆破 localized source nonlocal boundary porous medium blowup
  • 相关文献

参考文献11

  • 1CHADAM R S, COSNER C. Diffusive Logistic Equation with Indefinite Weights: Population Models in Disrupted Envi ronmentsII[J]. SIAMJ Math Anal, 1991, 22(4): 1043--1064.
  • 2DIAZ J I. On a Nonlinear Degenerate Parabolic Equation in Infiltration or Evaporation Through a Porous Medium [J]. J Differ Equat, 1987, 69(3): 368--403.
  • 3ANDERSON J R. Local Existence and Uniqueness of Solutions of Degenerate Parabolic Equations [J]. Comm Part Dif- fer Equat, 1991, 16(1): 105--143.
  • 4DU Li-li, XIANG Zhao-yin. A Further Blow-Up Analysis for a Localized Porous Medium Equation [J]. App Math Comptu, 2006, 179(1) 200--208.
  • 5LIU Qi-lin, LI Yu-xiang, GAO Hong jun. Uniform Blow-Up Rate for Diffusion Equations with Localized Nonlinear Source [J]. J Math Anal Appl, 2006, 320(2) : 771--778.
  • 6李中平,王雄瑞,周军.一类带有局部化源的反应扩散方程组解的整体存在性及爆破[J].西南师范大学学报(自然科学版),2007,32(3):15-18. 被引量:6
  • 7FRIEDMAN A. Monotonic Decay of Solutions of Parabolic Equations with Nonlocal Boundary Conditions[J]. QuartAppl Math, 1986, 44(3): 401--407.
  • 8SEO S. Global Existence and Decreasing Property of Boundary Values of Solutions to Parabolic Equations with Nonlocal Boundary Conditions [J]. Paci J Math, 2000, 193(1) 219--226.
  • 9SO UPLET P. Blow-Up in Non-Local Reaction-Diffusion Equations [J]. SIAM J Math Anal, 1998, 29 (6) : 1301-1334.
  • 10WANG Yu-lan, MU Chun-lai, XIANG Zhao-yin. Blowup of Solutions to a Porous Medium Equation with Nonlocal Boundary Condition [J]. Appl Math Comptu, 2007, 192(2): 579--585.

二级参考文献6

  • 1Chen You-peng,Xie Chun-hong.Blow-up for a porous medium equation with a localized source[J].Appl Math and Comput,2004,59:79-93.
  • 2Deng Wei-bing.Global Existence and Finite Time Blow up for a Degenerate Reaction-Diffusion System[J].Nonlinear Anal,2005,60:977-995.
  • 3Duan Zhi-wen,Deng Wei-bing,Xie Chun-hong.Uniform Blow-up Profile for a Degenerate Parabolic System with Nonlocal Source[J].Computers and Mathematics with Applications,2004,47:977-995.
  • 4Dichstein F,Escobedo M.A Maximum Principle for Semiliner Parabolic Systems and Applications[J].Nonlinear Anal,2001,45:832-837.
  • 5Li Fu-cai,Xie Chun-hong.Global Existence and Blow-up for a Nonlinear Porous Medium Equation[J].Applied Math Letters,2003,16:185-192.
  • 6Song Xian-fa,Zheng Si-ning,Jiang Zhao-xin.Blow up for a Nonlinear Diffusion System[J].Z Angrew Math Phys,2005,56:1-10.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部