期刊文献+

一类拟线性椭圆方程3个非平凡解的存在性

The Existence of Three Nontrivial Solutions for a Class of Quasi-Linear Elliptic Equations
下载PDF
导出
摘要 通过截断技术和涉及第二形变引理的变分方法研究了一类不含任何增长条件的拟线性椭圆方程3个非平凡解的存在性.首先利用截断技术和变分技巧得到该类拟线性椭圆方程存在1个非负非平凡解和1个非正非平凡解,然后通过第二形变引理构造这两个非平凡解之间的特殊山路,最后应用山路引理获得该类拟线性椭圆方程第三个非平凡解的存在性. Using the truncation technique and the variational approach involving the second deformation lemma, the existence of three nontrivial solutions for a class of quasi-linear elliptic equations without any growth conditions is obtained. First, through the truncation technology and the variational technique, we obtain that the elliptic equations have a nonnegative nontrivial solution and a nonpositive nontrivial solu- tion. Subsequently, we use the second deformation lemma to construct a special mountain pass path be- tween the two nontrivial solutions and obtain the existence of a third nontrivial solution by the mountain pass lemma.
作者 储昌木
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第12期114-118,共5页 Journal of Southwest University(Natural Science Edition)
基金 贵州省科教青年英才培养工程项目(黔省专合字(2012)157号) 贵州省"模式识别与智能系统"重点实验室建设项目(黔科合计[2009]4002)
关键词 拟线性椭圆方程 截断技术 变分方法 第二形变引理 quasi-linear elliptic equation the truncation technique the variational approach the secondde{ormation lemma
  • 相关文献

参考文献12

  • 1CUESTA M, FIGUEIREDO D, GOSSEZ J P. The Beginning of the Fuik Spectrum for the p-Laplacian[J]. J Diff Eq, 1999, 159(1): 212--238.
  • 2AMBROSETTI A, MANCINI G. Sharp Nonuniqueness Results for Some Nonlinear Problems [J]. Nonlinear Anal, 1979, 3(5): 635--645.
  • 3STRUWE M. A Note on a Result of Ambrosetti-Mancini[J]. Ann Mat Pura Appl, 1982, 81: 107--115.
  • 4AMBROSETTI A, LUPO D. On a Class of Nonlinear Dirichlet Problems with Multiple Solutions [J]. Nonlinear Anal, 1984, 8(10) 1145--1150.
  • 5STRUWE M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems [M]. 4th ed. New York: Springer-Verlag, 2008.
  • 6PAPAGEORGIOU E H, PAPAGEORGIOU N S. A Multiplicity Theorem for Problems with the p Laplacian [J]. J Funct Anal, 2007, 244(1): 63--77.
  • 7LIU Shi-bo. Multiple Solutions for Coercive p-Laplacian Equations[J]. J Math Anal Appl, 2006, 316(1) : 229--236.
  • 8BARTSCH T, LIU Zhao-li. On a Superlinear Elliptic p-Laplacian Equation [J]. J Diff Eq, 2004, 198(1): 149--175.
  • 9LIEBERMAN G. Boundary Regularity for Solutions of Degenerate Elliptic Equations [J]. Nonlinear Anal, 1988, 12(11) : 1203--1219.
  • 10VAZQUEZ J L. A Strong Maximum Principle for Some Quasilinear Elliptic Equations [J]. Appl Math Optim, 1984, 12(3) : 191--202.

二级参考文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部