期刊文献+

pMOS器件NBTI界面电荷引起耦合的数值模拟分析 被引量:1

Numerical Simulation of the Coupling of NBTI Interface Traps in pMOSFETs
下载PDF
导出
摘要 从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。 Without any assumptions, the channel hole concentration and the gate oxide layer electric field are got from the 2D simulation of pMOSFETs, and used to calculate the interface charge generation of Negative Bias Temperature Instability (NBTI). This is an effective method to study NBTI reliability. First all, gate oxide/silicon interface coupling is simulated and com- pared with the existing experimental data. The analysis results show that when the interface charge of NBTI is generated, the gate oxide layer electric field will be increased, but will not make the interface charge continuously increase, the interface charge will be decreased because the channel hole concentration is reduced (the interface coupling). When the interface charge is generated more than 1012/cm2, the interface coupling is very obvious and could be measured. The interface coupling effect to reduce NBTI degradation is a kind of new degradation saturation mechanism, similar to the "hard saturation", but the strong time power index changes will not appear.
出处 《固体电子学研究与进展》 CSCD 北大核心 2012年第6期536-541,共6页 Research & Progress of SSE
基金 国家自然科学基金青年科学基金资助项目(11109052) 深圳市基础研究计划资助项目(JC201005280558A JC201005280565A)
  • 相关文献

参考文献13

  • 1Alam M A, Kufluoglu H, Varghese D,et al. A com-prehensive model for PMOS NBTI degradation : Re-cent progress [J ]. Microelectr Reliab, 2007, 47 ( 6 ):853-862.
  • 2Mahapatra S,Islam A E,Deora S,et al. A criticalre-evaluation of the usefulness of R-D framework inpredicting NBTI stress and recovery [C]. Proceedingsof IEEE Inter-national Reliability Physics Sympo-sium, 2011 ? 6A. 3. 1-10.
  • 3Kumar S V,Kim C H, Sapatnekar S S. A finite-oxidethickness-based analytical modelfor negative bias tem-perature instability [J]. IEEE Trans Device MaterRel, 2009,9(4):537-556.
  • 4Alam M A, Mahapatra S. A comprehensive model ofPMOS NBTI degradation [J]. Microelectr Reliab,2005,45(1):71-81.
  • 5Kufluoglu H, Alam M A. Theory of interface-rap-in-duced NBTI degradation for reduced cross sectionMOSFETs[J], IEEE Trans Electron Devices, 2006,53(5):1120-1130.
  • 6Grasser T,Entner R, Triebl 0,et al. TCAD model-ing of negative bias temperature instability[C]. Inter-national Conference on Simulation of SemiconductorProcesses and Devices, 2006 : 330-333.
  • 7Islam A E? Kufluoglu H,Varghese D,et al. Recentissues in negative bias temperature instability : Initialdegradation, field dependence of interface trap genera-tion, hole trapping effects? and relaxation [J]. IEEETrans Electron Devices, 21007,54(9) :2143-2154.
  • 8Krishnan A T, Chancellor C,Chakravarthi S,et al.Material dependence of hydrogen diffusion : Implica-tions for NBTI degradatioa[C]. Proceedings of Inter-national Electron Devices Meeting, 2005:688-691.
  • 9Chakravarthi S, Krishnan A T, Reddy V. A compre-hensive framework for predictive modeling of negativebias temperature instability[C]. Proceedings of IEEEInternational Reliability Physics Symposium, 2004:273-282.
  • 10Krishnan A T? Chakravarthi S, Nicollian P,et al.Negative bias temperature instability mechanism : Therole of molecular hydrogen [J]. Appl Phys Lett,2006,88(15):1-3.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部