期刊文献+

基于局部LRS方法的稀疏信号片段检测

Detecting sparse signal segments by local LRS method
原文传递
导出
摘要 在稀疏信号的检测问题中,两个重要的挑战是如何提高检测精确度和降低计算复杂度。提出局部似然比选择法(LRSL)并用于检测一维噪声数据中的稀疏信号片段。与一般的似然比选择法(LRS)不同,LRSL方法首先选出观测值大于某个阈值的点,然后再从这些点的邻域内进行检测。由于信号片段的稀疏性,LRSL方法能够显著地降低计算复杂度。另外,理论渐近结果表明,与LRS相比,LRSL方法能检测到更加微弱的信号。仿真结果表明所提出的方法具有更高的检测精度和检测效率。 Two important challenges in detecting sparse signals are how to improve the detection accuracy and reduce the computational complexity.The local likelihood ratio selection(LRSL) procedure was proposed to detect and identify sparse signal segments in one-dimensional noise data.Different from LRS procedure which directly choose candidate intervals from all intervals,the LRSL procedure only considers neighborhoods of those points whose observed data greater than some threshold.Because of the sparsity of the signals,the proposed procedure can greatly reduce the computational complexity.On the other hand,asymptotic results demonstrate that the LRSL procedure can detect weaker signals.The simulation results indicate that the proposed procedure has high detection accuracy and computational efficiency.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第12期1-5,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11071146) 国家重点基础研究发展计划(973计划)项目(2007CB814901)
关键词 计算复杂度 似然比检测 局部似然比检测 稀疏信号检测 检测精度 computational complexity likelihood ratio selection local likelihood ratio selection sparse signal detection detection accuracy
  • 相关文献

参考文献11

  • 1BHATTACHARYA P. Some aspects of change-point analysisl [J]. Edward Carlstein, Hans-Georg Miller, David Siegmund, ed. Change-point Problems: Papers from the AMS-IMS-SIAM Summer Research Conference. Hayward, CA: Institute of Mathematical Statistics, 1994:28-56.
  • 2JENG JESSIE X, CAI TONY T, LI Hongzhe. Optimal sparse segment identification with application variation analysis[J ]. Journal of American Statistical Association, 2010, 105(491 ) :1156-1166.
  • 3MAHADEVAN S, CASASENT D. Detection of triple junction parameters in microscope images C// Proceeding of SPIE. [S.1].[s.n. ], 2001, 4387:204-214.
  • 4National Research Council. Expanding the vision of sensor materials [ M]. Washington: National Academies Press, 1995.
  • 5DONOHO D, HUO Xiaoming. Beamlets and multiscale image analysis [ J]. Lecture Notes in Computational Engineering, 2001, 20 : 149-196.
  • 6DONOHO D, JIN Jiashun. Higher criticism for detecting sparse heterogeneous mixtures [ J ]. Annals of Statistics, 2004, 32 ( 3 ) : 962-994.
  • 7DONOHO D, JIN Jiashun. Higher criticism thresholding: optimal feature selection when useful weak[ J ] . Proceedings of Na- tional Acaddemy Sciences, 2008, 105 (39) : 14790-14795.
  • 8DROR G, ABRAMOWICZ H, HORN D. Vertex identification in high energy physics experiments I C ]// Neural Information Processing Systems (NIPS). [ S. 1. ] : [ s. n. ] , 1998:868-874.
  • 9Peter Hall, JIN Jiashun. Innovated higher criticism for detecting sparse signals in correlated statist [ J]. Annals of Statistics, 2010, 38(3) :1686-1731.
  • 10ARIAS-CASTRO E, DONOHO D, HUO Xiaoming. Near-optimal detection of geometric objects by fast [ J]. IEEE Transac- tions on Information Theory, 2005, 51 (7):2402-2425.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部