期刊文献+

Mg_(65)Ni_(21)Pr_(14)非晶储氢合金电化学性能研究

Study on Electrochemical Properties of Mg_(65)Ni_(21)Pr_(14) Amorphous Hydrogen Storage Alloy
下载PDF
导出
摘要 采用铜模喷铸法制备了Mg65Ni21Pr14块体非晶合金,研究了该合金在充放电循环过程中组织变化及其对电化学性能的影响。XRD分析表明,非晶合金电极在第6次充放电循环后开始晶化,生成Mg2NiH4和Ni5Pr相。电化学测试表明,Mg65Ni21Pr14非晶合金电极经过3次循环即可活化,其最大放电容量达到429.4 mAh·g-1,经过100次循环后,容量保持率为87.63%。研究表明,非晶结构是实现合金高放电容量和循环稳定性的重要因素。 The bulk amorphous alloy Mg65Ni21Pr14 was prepared by copper-mold injection casting. The microstructure evolution and the electrochemical properties of the alloy were investigated during charge/discharge cycling. The XRD results show that the amorphous structure begins to crystallize after six cycles, the Mg2NiH4 phase forms at beginning, and then Ni5Pr phase appears, The results of electrochemical properties show that the amorphous electrode is activated after three cycles, the maximum discharge capacity reaches 429.4 mAh .g-1, and the cycle stability after 100 charge/discharge cycles reaches 87.63%. It is found that the amorphous structure is an important factor to achieve a high discharge capacity and to improve the cycle stability.
出处 《铸造技术》 CAS 北大核心 2012年第12期1369-1371,共3页 Foundry Technology
基金 国家自然科学基金资助项目(50972066)
关键词 非晶储氢合金 铜模喷铸 电化学性能 循环稳定性 amorphous hydrogen storage alloy copper mold injection casting electrochemical property cycle stability
  • 相关文献

参考文献6

二级参考文献31

  • 1Li Y, Ng S C, Ong C K. New amorphous alloys with high strength and good bend ductility in the Mg-Ni-Nd system[J].Journal of Materials Processing Technology, 1995,48(1-4):489-493.
  • 2Wei Y X, Xi X K, Zhao D Q, et al. Formation of MgNiPr bulk metallic glasses in air[J].Materials Letters, 2005,59 (8-9) : 945-947.
  • 3Park E S, Chang H J, Kim D H. Mg-rich Mg-Ni-Gd ternary bulk metallic glasses with high compressive specific strength and ductility[J]. Journal of Materials Research,2007,22(2):334-338.
  • 4Gu X, Shiflet G J, Guo F Q, Poon S J. Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility[J]. Journal of Materials Research, 2005,20 (8) : 1 935-1 938.
  • 5Zhao Y Y, Ma E, Xu J. Reliability of compressive fracture strength of Mg-Zn-Ca bulk metallic glasses.. Flaw sensitivity and Weibull statistics [J]. Scripta Materialia, 2008,58 (6) : 496-499.
  • 6Zheng Q, Cheng S, Strader J H, et al. Critical size and strength of the best bulk metallic glass former in the Mg- Cu-Gd ternary system [J]. Scripta Materialia, 2007, 56 (2):161-164.
  • 7Zheng Q, Ma H, Ma E, Xu J. Mg-Cu-(Y, Nd) pseudoternary bulk metallic glasses: The effects of Nd on glassforming ability and plasticity[J]. Scripta Materialia, 2006,55(6) : 541-544.
  • 8Park E S, Kim W T, Kim D H. Bulk glass formation in Mg-Cu-Ag-Y-Gd alloy [ J ]. Materials Transactions, 2004,45(7) :2 474-2 477.
  • 9Park E S, Lee J Y, Kim D H. Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg-Cu-Gd bulk metallic glass [J]. Journal of Materials Research,2005,20(9):2 379-2 385.
  • 10Park E S, Kyeong J S, Kim D H. Enhanced glass forming ability and plasticity in Mg-based bulk metallic glasses[J]. Materials Science and Engineering A,2007, 449-451 : 225-229.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部