期刊文献+

Deflecting Easy-axis of Fe_3O_4 Single Crystal Nanowires by Magnetic-field-induced Method

Deflecting Easy-axis of Fe_3O_4 Single Crystal Nanowires by Magnetic-field-induced Method
原文传递
导出
摘要 In order to control the orientation of easy-axis of magnetic nanowires, FesO4 single crystal nanowires with easy-axis perpendicular to wire-axis were prepared successfully by means of a magnetic-field-induced method. Analysis of X-ray diffraction and electron diffraction pattern showed that there was a wide-angle deflection of easy-axis in the prepared Fe304 nanowires. A high saturation magnetization (82 emu/g) of the FesO4 nanowires was achieved at room temperature. The benefits and mechanism of the deflection of easy-axis from its wire-axis in FesO4 single crystal nanowires were discussed. The results are expected to broaden the magnetic properties of traditional ferrite nanowires. In order to control the orientation of easy-axis of magnetic nanowires, FesO4 single crystal nanowires with easy-axis perpendicular to wire-axis were prepared successfully by means of a magnetic-field-induced method. Analysis of X-ray diffraction and electron diffraction pattern showed that there was a wide-angle deflection of easy-axis in the prepared Fe304 nanowires. A high saturation magnetization (82 emu/g) of the FesO4 nanowires was achieved at room temperature. The benefits and mechanism of the deflection of easy-axis from its wire-axis in FesO4 single crystal nanowires were discussed. The results are expected to broaden the magnetic properties of traditional ferrite nanowires.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第11期976-980,共5页 材料科学技术(英文版)
基金 financially supported by the National Natural Science Foundation of China(No.50572016)
关键词 MAGNETIC-FIELD-INDUCED Fea04 nanowire Easy-axis Magnetic-field-induced Fea04 nanowire Easy-axis
  • 相关文献

参考文献24

  • 1Z.K. Wang, M.H. Kuok, S.C. Ng, D.J. Lockwood, M.G. Cottam, K. Nielsch, R.B. Wehrspohn and U. Gosele: Phys. Rev. Lett., 2002, 89, 027201.
  • 2T.T. Albrecht, J. Schotter, G.A. Kastle, N. Emley, T. Shibauchi and L.K. Elbaum: Science, 2000, 290, 2126.
  • 3E.Y. Wedmedenko, A. Kubetzka, K.V. Bergmann, O. Pietzsch, M. Bode, J. Kirschner, H.P. Oepen and R. Wiesendanger: Phys. Rev. Lett., 2004, 92, 0772072.
  • 4T.M. Whitney, P.C. Searson, J.S. Jiang and C.L. Chine: Science, 1993, 261, 1316.
  • 5S. Mathur, S. Barth, U. Werner, F.H. Ramirez and A.R. Rodriguez: Adv. Mater., 2008, 20, 1550.
  • 6M.L. Zhong, Z.W. Liu, X.C. Zhong, H.Y. Yu and D.C. Zeng: J. Mater. Sci. Technol., 2011, 27, 985.
  • 7J.W. Guo, H. Huang, X.M. Ren, X. Yan, S.W. Cai, W. Wang, Y.Q. Huang, Q. Wang and X. Zhan: J. Mater. Sci. Technol:, 2011, 27, 507.
  • 8X.K. Meng, S.C. Tang and S. Vongehr: J. Mater. Sci. Technol., 2010, 26, 487.
  • 9M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, K. Akhtar and M.M. Abdullah: J. Mater. Sci. Technol., 2011, 27, 594.
  • 10C. Terrier, M. Abid, C. Arm, S.S. Guisan, L. Gravier and J.Ph. Ansermet: J. Appl. Phys., 2005, 98, 086102.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部