期刊文献+

NiSi_x/Ge核壳纳米线作为锂离子电池负极材料的电化学性能 被引量:3

High-performance Li-ion Batteries Using NiSi_x/Ge Core-shell NWs as Anode Materials
下载PDF
导出
摘要 Ge具有约1 600mAhg-1的理论比容量,是商业化石墨材料理论容量(372mAhg-1)的4倍多,是目前较有吸引力的锂离子电池负极材料。纳米材料相比于体材料由于具有独特的物理化学特性,广泛地应用于锂离子电池领域。本文采用化学气相沉积和射频溅射的方法在泡沫镍上合成出了大量NiSix/Ge核壳纳米线,并进行了扫描电子显微镜(SEM)、X射线能谱(EDX)、透射电子显微镜(TEM)表征分析。将其作为负极材料应用于锂离子电池中,首次放电比容量约为1700mAhg-1,首次效率为70.9%。60个循环后放电比容量仍可维持在950mAhg-1以上,相比于Ni/Ge薄膜,表现出更好的锂离子电池循环性能。NiSix纳米线的优异导电性、纳米线之间的充足空间给予的缓解体积膨胀功能及膜与纳米线的优良接触在提高锂离子电池性能上起到了非常重要的作用。 Germanium can offer a high capacity of around 1 600mAhg-1 , which is four times more than of graphite, attracting more and more focus on studying it. Nanomaterials have been widely applied in Li-ion batteries due to their unique physical and chemical properties. In this paper, we employed a simple chemical vapor deposition (CVD) and subsequent RF sputtering method to synthesize the NiSix/Ge core-shell nanowires (NWs), which were specifically characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDX), and transmission electron microscopy (TEM). When used as anode materials for Li-ion batteries, the sample achieved a first discharge capacity of around 1 700mAhg-1 and Compared to the Ni/Ge thin film, NiSix/Ge core-shell nanowires exhibited better cycling performance, which can be attributed to the good conductivity of NiSix NWs, efficient alleviation of volume change and high quality of adhesion between Ge layer and NWs.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2012年第6期831-834,共4页 Journal of Materials Science and Engineering
基金 浙江省创新团队资助项目(2009R50005)
关键词 核壳结构 纳米线 负极 锂离子电池 core-shell structure nanowires anode Li-ion batteries
  • 相关文献

参考文献10

  • 1R. Teki, M. K. Datta, R. Krishnan, et al. Nanostructured silicon anodes for lithium ion reehargeable batteries[J]. Adv. Mater. , 2009, 20: 2236-2242.
  • 2C. K. Chan, H. L. Peng, G. Liu, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nat. Nanotechnol. , 2008, 3:31-35.
  • 3C. K. Chan, X. F. Zhang, Y. Cui. High capacity Li ion battery anodes using Genanowires[J].NanoLett. , 2008, 8: 307-309.
  • 4J. Hassoun, S. Panero, P. Simon, et al. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries[J]. Adv. Mater., 2007, 19: 1632-1635.
  • 5T. Song, J. L. Xia, J. H. Lee, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Lett. , 2010, 10:1710-1716.
  • 6Y. H. Xu, G. P. Y-n, Y. L, Ma, P. J. Zuo, X. Q. Cheng. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon souree[J].J. Mater. Chem., 2010, 20: 3216-3220.
  • 7L. F. Cui, Y. Yang. C. M. Hsu, Y. Cui. Carbon-Silicon Core-Shell Nanowires as High capacity electrode for lithium ion batteries[J]. Nano Lett., 2009, 9: 3370-3374.
  • 8A. Magasinski, P. Dixon, B. Hertzberg, et al. High- performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature, 2010, 9:353-358.
  • 9N. Du, X. Fan, J. X. Yu, H. Zhang, D. R. Yang. Ni3Si2-Si nanowires on Ni foam as a high-performance anode of Li-ion batteries[J]. Electrochem. Commun. , 2011, 13 : 1443 - 1446.
  • 10Y. P. Song, A. L. Schmitt, J. Song. Ultralong single-crystal metallic Ni2Si nanowires with low resistivity[J]. Nano Lett. , 2007, 7:965-969.

同被引文献37

  • 1吴惠明,涂江平,黎阳,袁永锋,赵新兵,曹高劭.竹碳的结构及电化学性能研究[J].材料科学与工程学报,2005,23(2):157-159. 被引量:15
  • 2J. B. Goodenough and Y. Kim. Challenges for rechargeable Li batteries[J]. Chem. Mater. , 2010, 22(3): 587 ~603.
  • 3M. S. Whittingham. Materials challenges facing electrical energy storage[J]. MRS Bull. , 2008, 33(4): 411 ~419.
  • 4M. Armand, J. -M. Taraseon. Building better batteries[J]. Nature, 2008, 451(7179): 652 ~657.
  • 5J.- M. Taraseon, M. Armand. Issues :and challenges facing rechargeablelithium batteries[J].Nature, 2001, 414(6861) 359 ~367.
  • 6B.A. Boukamp, G. C. Lesh, R. A. Huggins. All - solid lithium electrodes with mixed - conductor matrix [J]. J. Electrochem. Sot., 1981, 128(4): 725~729.
  • 7U. Kasavajjula, C. S. Wang, A.J. Appleby. Nano- and bulk silicon- based insertion anodes for lithium-ion secondary cells[J]. J. Power Sources, 2007, 163(2): 1003.
  • 8T. D. Hatchard, J. R. Dahn. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. J. Electrochem. Sot., 2004, 151(6): A838~A842.
  • 9H. Kim, M. Seo, Mi Hee Park, J. Cho. A critical size of silicon nano-anodes for lithium rechargeable batteries [J ]. Angew. Chem. Int. Ed., 2010, 49(12): 2146-2149.
  • 10C.K. Chan, H. L. Peng, G. Liu, et al. High-performance lithium battery anodes using silicon nanowires [J ]. Nature Nanotech. , 2008, 3(1): 31-35.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部