期刊文献+

压力项处理方式对非定常流动投影方法时间精度的影响

Effect of treatment for pressure derivate terms on the temporal accuracy of the projection method for unsteady flow
下载PDF
导出
摘要 针对三种典型的压力项处理方式,研究了投影方法的时间精度。结果显示三种压力项处理格式即P1-P3得到了一致高阶的速度精度,而压力精度为1阶。对于速度散度,P1格式的精度为1阶,P2与P3格式的精度为2阶。综合来看P2格式的误差最小。利用投影方法和P2格式进行了各向同性衰变湍流的三维直接数值模拟,计算得到的三维能谱与实验能谱相符合。得到的速度分量的概率密度函数符合高斯分布。当空间两点间隔较大时,速度分量增量的概率密度函数也服从高斯分布。 The temporal accuracy of the projection method is studied presently for three typical types of treatments for the pressure derivate terms (P1-P3). The results show that high order temporal accuracy for the velocity is obtained, but the computed pressure has first-order temporal accuracy. The P1 scheme gives first-order accuracy for the velocity divergence. While both P2 and P3 schemes give second-order accuracy for this quantity. To sum up, the P2 scheme has less numerical errors. The direct numerical simulation of iso- tropic decaying turbulence is conducted by utilizing the projection method with the P2 scheme. The computed three-dimensional energy spectral conforms to the experimental data. The probability density functions for the velocity components obey a Gaussian distribution. For the increments of velocity components between two points with relatively large spatial distance, their probability density functions follow also a Gaussian distribution.
作者 吴韶华 张健
出处 《空气动力学学报》 EI CSCD 北大核心 2012年第6期772-776,797,共6页 Acta Aerodynamica Sinica
基金 国家自然科学基金(51076082)
关键词 投影方法 压力梯度项 各向同性衰变湍流 直接数值模拟 projection method pressure derivate term isotropic decaying turbulence direct numerical simulation
  • 相关文献

参考文献15

  • 1CHORIN A J. Numerical solution of Navier-Stokes equations [J]. Mathematics of Computation, 1968, 22 (104) : 745-762.
  • 2KIM J, MOIN P. Application of fractional-step method to incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1985, 59(2): 308-323.
  • 3ORLANDI P. Fluid flow phenomena a numerical tool- kit [ M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 2000.
  • 4刘淼儿,任玉新,张涵信.求解不可压Navier-Stokes方程的三阶精度投影方法[J].清华大学学报(自然科学版),2005,45(2):285-288. 被引量:5
  • 5PEROT J B. An analysis of the fractional step method [J]. Journal of Computational Physics, 1993, 108 (1) : 51-58.
  • 6NI M J, ABDOU M A. A bridge between projeetic methods and simple type methods for incompressib Navier-Stokes equations[J]. International Journal fc Numerical Methods in Engineering, 2007, 72 (12) 1490-1512.
  • 7GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes [J] Mathematics of Computa-tion, 1998, 67(221) 73-85.
  • 8MORINISHI Y, LUND T S, VASILYEV 0 V, MOIN P. Fully conservative higher order finite difference schemes for incompressible flow[J]. Journal of Com- putational Physics, 1998, 143(1): 90-124.
  • 9MCDERMOTT R J. Toward one-dimensional turbulence subgrid closure for large-eddy simulation[D]. The Uni- versity of Utah, 2005.
  • 10Yuxin Ren,Yuxi Jiang,Miao'er Liu,Hanxin Zhang.A class of fully third-order accurate projection methods for solving the incompressible Navier-Stokes equations[J].Acta Mechanica Sinica,2005,21(6):542-549. 被引量:2

二级参考文献34

  • 1Chorin A J. Numerical solution of the Navier-Stokes equations [J]. Math Comput, 1968, 22: 745-762.
  • 2Chorin A J. On the convergence of discrete approximation to the Navier-Stokes equations [J]. Math Comput, 1969, 23: 341-353.
  • 3Kim J, Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations [J]. J Comput Phys, 1985, 59: 308-323.
  • 4van Kan J. A second-order accurate pressure-correction scheme for viscous incompressible flow [J]. SIAM J Sci Stat Comput, 1986, 7(3): 870-891.
  • 5Bell J B, Colella P, Glaz H M. A second order projection method for the incompressible Navier-Stokes equations [J]. J Comput Phys, 1989, 85: 257-283.
  • 6Perot J B. An analysis of the fractional step method [J]. J Coumput Phys, 1993, 108: 51-58.
  • 7Quarteroni A, Saleri F, Veneziani A. Factorization methods for the numerical approximation of Navier-Stokes equations [J]. Comput Methods Appl Mech, 2000, 188: 505-526
  • 8Brown D L, Cortez R, Minion M L. Accurate projection methods for the incompressible Navier-Stokes equations [J]. J Comput Phys, 2001, 168: 464-499.
  • 9Shen J. Remarks on the pressure error estimates for the projection methods [J]. Int J Numer Methods Fluids, 1993, 16: 249253.
  • 10Weinan N, Liu J G. Projection Method Ⅱ: Godunov-Ryabenki Analysis [J]. SIAM J Numer Anal, 1996, 33: 1597-1621.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部