期刊文献+

快速凝固中局部非平衡溶质截留的分析模型(英文) 被引量:2

An analytical model for local-nonequilibrium solute trapping during rapid solidification
下载PDF
导出
摘要 对二元合金快速凝固过程中的局部非平衡扩散模型(LNDM)进行改进。改进的模型考虑了熔体中溶质浓度和溶质通量流场与局部平衡的偏差。采用双曲函数扩散方程求得了熔体中溶质浓度和通量的准确解。结果表明,对任何固?液界面的动力学,当有效扩散系数DbLNDM→0和在v→vDb发生完全溶质截留KLNDM(v)→1时,凝固过程将由扩散控制转变为完全的热控制。非扩散凝固和完全溶质截留的临界参数为在溶体中的扩散速度vDb,考察了不同界面动力学途径的溶质截留模型。 Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. The LNDM takes into account deviation from local equilibrium of solute concentration and solute flux fields in bulk liquid. The exact solutions for solute concentration and flux in bulk liquid were obtained using hyperbolic diffusion equations. The results show the transition from diffusion-limited to purely thermally controlled solidification with effective diffusion coefficient →0 and complete solute trapping KLNDM(v)→1 at v→vDb for any kind of solid-liquid interface kinetics. Critical parameter for diffusionless solidification and complete solute trapping is the diffusion speed in bulk liquid vDb. Different models for solute trapping at the interface with different interface kinetic approaches were considered.
作者 S. L. SOBOLEV
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2749-2755,共7页 中国有色金属学报(英文版)
关键词 二元合金 溶质截留 快速凝固 局部非平衡扩散 双曲扩散方程 溶质浓度 溶质通量流场 binary alloys solute trapping rapid solidification local-nonequilibrium diffusion hyperbolic diffusion equation solute concentration solute flux fields
  • 相关文献

参考文献28

  • 1HERLACH D M. Non-equilibrium solidification of undercooled metallic melts [J]. Materials Science and Engineering A, 1994, 12: 177-272.
  • 2LIU F, YANG G C. Rapid solidification of highly undercooled bulk liquid superalloy: recent developments, future directions [J]. International Materials Reviews, 2006, 51 (3): 145-170.
  • 3ECKLER K, COCHRANE R F, HERLACH D M, FEUERBACHER B, JURISCH M. Evidence for a transition from diffusion-controlled to thraally controlled solidification in metallic alloys [J]. Physical Review B, 1992, 45: 5019-5022.
  • 4WALDER S, RYDER P L. Rapid dendritic growth in undercooled Ag-Cu melts [J]. Acta Metallurgica et Materialia, 1995, 43(I1): 4007-4013.
  • 5WALDER S. Dendritic growth rate in undercooled, dilute Ti-Ni melts [J]. Materials Science and Engineering A, 1997, 229(1-2): 156-162.
  • 6KITTL J A, AZIZ M J, BRUNCO D P, THOMPSON M O. Nonequilibdum partitioning during rapid solidification of $i-As alloys [J]. Journal of Crystal Growth, 1995, 148: 172-182.
  • 7BRUNCO D P, THOMPSON M O, HOGLUNG D E, AZIZ M J, GOSSMANN H J. Germanium partitioning I silicon during rapid solidification [J]. Journal of Applied Physics, 1995, 78(3): 1575-1582.
  • 8AZIZ M J, KAPLAN T. Continuous growth model for interface motion during alloy solidification [J]. Acta Metallurgica, 1988, 36: 2335-2347.
  • 9REITANO R, SMITH P M, AZIZ M J. Solute trapping of group III, IV and V elements in silicon by an aperiodic stepwise growth mechanism [J]. Jotwaal of Applied Physics, 1994, 76(3): 1518-1529.
  • 10SOBOLEV S L. Local-nonequilibrium model for rapid solidification ofunderooled melts [J]. Physics Letters A, 1995, 199: 383-386.

同被引文献38

  • 1杨根仓,谢辉,郝维新,张忠明,郭学锋.Liquid-liquid phase separation in highly undercooled Ni-Pb hypermonotectic alloys[J].中国有色金属学会会刊:英文版,2006,16(2):290-293. 被引量:2
  • 2BOETTINGER W J, CORIELL S R, GREER A L, KARMA A, KURZ W, RAPPAZ M, TRIVEDI R. Solidification microstructures: Recent developments, future directions [J]. Acta Materialia, 2000, 48 43-70.
  • 3ECHEBARRIA B, FOLCH R, KARMA A, PLAPP M. Quantitative phase field model of alloy solidification [J]. Physical Review E, 2004 70: 061604.
  • 4GALENKO P K, REUTZEL S, HERLACH D M, DANILOV D A, NESTLER B. Modelling of dendritic solidification in undercooled dilute Ni-Zr melts [J]. Acta Materialia, 2007, 55:6834 6842.
  • 5KESSLER D, KOPLIK J, LEVINE H. Pattern selection in fingered growth phenomena [J]. Advances in Physics, 1988, 37: 255-339.
  • 6BARBIERI A, LANGER J S. Predictions of dendritic growth rates in the linearized solvability theory [J]. Physical Review A, 1989, 39: 5314-5325.
  • 7BRENER E A, MEL'NIKOV V I. Pattern selection in two- dimensional dendritic growth [J]. Advances in Physics, 1991, 40: 53-97.
  • 8IVANTSOV G E Temperature field around spherical, cylindrical, and needle-shaped crystals which grow in supercooled melts [J]. Dokl Akad Nauk SSSR, 1947, 58: 567-569. (in Russian).
  • 9IVANTSOV G E On the growth of a spherical or a needlelike crystal of a binary alloy [J]. Dokl Akad Nauk SSSR, 1952, 83: 573-576.
  • 10LIPTON J, GLICKSMAN M E, KURZ W. Free dendritic growth [J]. Materials Science and Engineering, 1984, 65: 45-55.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部